Journal of International Reproductive Health/Family Planning ›› 2025, Vol. 44 ›› Issue (2): 150-154.doi: 10.12280/gjszjk.20240488
• Review • Previous Articles Next Articles
BIAN Hai-jun, ZHANG Xin-yue, FENG Rui-zhi, QIAN Yun()
Received:
2024-10-08
Published:
2025-03-15
Online:
2025-03-10
Contact:
QIAN Yun, E-mail: BIAN Hai-jun, ZHANG Xin-yue, FENG Rui-zhi, QIAN Yun. The Influence of Sperm Factors on Embryonic Development[J]. Journal of International Reproductive Health/Family Planning, 2025, 44(2): 150-154.
Add to citation manager EndNote|Ris|BibTeX
[1] | Mu J, Zhou Z, Sang Q, et al. The physiological and pathological mechanisms of early embryonic development[J]. Fundam Res, 2022, 2(6):859-872. doi: 10.1016/j.fmre.2022.08.011. |
[2] | Zhang J, Lv J, Qin J, et al. Unraveling the mysteries of early embryonic arrest: genetic factors and molecular mechanisms[J]. J Assist Reprod Genet, 2024, 41(12):3301-3316. doi: 10.1007/s10815-024-03259-7. |
[3] | Li J, Luo L, Diao J, et al. Male sperm quality and risk of recurrent spontaneous abortion in Chinese couples: A systematic review and meta-analysis[J]. Medicine(Baltimore), 2021, 100(10):e24828. doi: 10.1097/MD.0000000000024828. |
[4] |
Nikolova S, Parvanov D, Georgieva V, et al. Impact of sperm characteristics on time-lapse embryo morphokinetic parameters and clinical outcome of conventional in vitro fertilization[J]. Andrology, 2020, 8(5):1107-1116. doi: 10.1111/andr.12781.
pmid: 32119189 |
[5] | 黄文军, 刘力, 马雪娟. 精子形态对体外受精—胚胎移植结局的影响[J]. 青海医药杂志, 2022, 52(8):17-19. |
[6] |
Yazdanpanah Ghadikolaei P, Ghaleno LR, Vesali S, et al. Epidemiology of sperm DNA fragmentation in a retrospective cohort of 1191 men[J]. Andrology, 2023, 11(8):1663-1672. doi: 10.1111/andr.13472.
pmid: 37280171 |
[7] | Andrabi SW, Ara A, Saharan A, et al. Sperm DNA Fragmentation: causes, evaluation and management in male infertility[J]. JBRA Assist Reprod, 2024, 28(2):306-319.doi:10.5935/1518-0557.20230076. |
[8] | Zhou W, Zhang J, Cheng Z, et al. Mean number of DNA breakpoints: illuminating sperm DNA integrity and in vitro fertilization outcomes[J]. Fertil Steril, 2024, 121(2):264-270. doi: 10.1016/j.fertnstert.2023.11.026. |
[9] | Gao J, Yan Z, Yan L, et al. The effect of sperm DNA fragmentation on the incidence and origin of whole and segmental chromosomal aneuploidies in human embryos[J]. Reproduction, 2023, 166(2):117-124. doi: 10.1530/REP-23-0011. |
[10] | Kaiyal RS, Karna KK, Kuroda S, et al. Sperm chromatin dispersion assay reliability and assisted reproductive technology outcomes: Systematic review and meta-analysis[J]. Andrology,2024 Aug 12. doi: 10.1111/andr.13725. |
[11] | 林垲皓. 精子性染色体非整倍体发生机制研究进展[J]. 中华男科学杂志, 2021, 27(6):547-552. doi: 10.13263/j.cnki.nja.2021.06.012. |
[12] |
Burrello N, Vicari E, Shin P, et al. Lower sperm aneuploidy frequency is associated with high pregnancy rates in ICSI programmes[J]. Hum Reprod, 2003, 18(7):1371-1376. doi: 10.1093/humrep/deg299.
pmid: 12832359 |
[13] | Nicopoullos JD, Gilling-Smith C, Almeida PA, et al. The role of sperm aneuploidy as a predictor of the success of intracytoplasmic sperm injection?[J]. Hum Reprod, 2008, 23(2):240-250. doi: 10.1093/humrep/dem395. |
[14] | Bolzán AD. Considerations on the scoring of telomere aberrations in vertebrate cells detected by telomere or telomere plus centromere PNA-FISH[J]. Mutat Res Rev Mutat Res, 2024,794:108507. doi: 10.1016/j.mrrev.2024.108507. |
[15] | Erdem HB, Bahsi T, Ergün MA. Function of telomere in aging and age related diseases[J]. Environ Toxicol Pharmacol, 2021,85:103641. doi: 10.1016/j.etap.2021.103641. |
[16] | Amirzadegan M, Sadeghi N, Tavalaee M, et al. Analysis of leukocyte and sperm telomere length in oligozoospermic men[J]. Andrologia, 2021, 53(10):e14204. doi: 10.1111/and.14204. |
[17] | Yuan Y, Tan Y, Qiu X, et al. Sperm telomere length as a novel biomarker of male infertility and embryonic development: A systematic review and meta-analysis[J]. Front Endocrinol(Lausanne), 2022,13:1079966. doi: 10.3389/fendo.2022.1079966. |
[18] | Ribas-Maynou J, Mateo-Otero Y, Sanchez-Quijada M, et al. Telomere Length in Pig Sperm Is Related to In Vitro Embryo Development Outcomes[J]. Animals(Basel), 2022, 12(2):204. doi: 10.3390/ani12020204. |
[19] | 张睿妍, 邓涵瑜, 陈柯欣, 等. 附睾小体调节精子成熟和父系表观遗传的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(6):518-523. doi: 10.12280/gjszjk.20240381. |
[20] |
Vallet-Buisan M, Mecca R, Jones C, et al. Contribution of semen to early embryo development: fertilization and beyond[J]. Hum Reprod Update, 2023, 29(4):395-433. doi: 10.1093/humupd/dmad006.
pmid: 36882116 |
[21] | Li H, Wang Z, Zhao B, et al. Sperm-borne lncRNA loc100847420 improves development of early bovine embryos[J]. Anim Reprod Sci, 2023,257:107333. doi: 10.1016/j.anireprosci.2023.107333. |
[22] | Wu C, Blondin P, Vigneault C, et al. Sperm miRNAs-potential mediators of bull age and early embryo development[J]. BMC Genomics, 2020, 21(1):798. doi: 10.1186/s12864-020-07206-5. |
[23] | Cui L, Fang L, Zhuang L, et al. Sperm-borne microRNA-34c regulates maternal mRNA degradation and preimplantation embryonic development in mice[J]. Reprod Biol Endocrinol, 2023, 21(1):40. doi: 10.1186/s12958-023-01089-3. |
[24] | Wang M, Du Y, Gao S, et al. Sperm-borne miR-202 targets SEPT7 and regulates first cleavage of bovine embryos via cytoskeletal remodeling[J]. Development, 2021, 148(5):dev189670. doi: 10.1242/dev.189670. |
[25] | Liang K, Yao L, Wang S, et al. miR-125a-5p increases cellular DNA damage of aging males and perturbs stage-specific embryo development via Rbm38-p53 signaling[J]. Aging Cell, 2021, 20(12):e13508. doi: 10.1111/acel.13508. |
[26] |
Li H, Li L, Lin C, et al. Decreased miR-149 expression in sperm is correlated with the quality of early embryonic development in conventional in vitro fertilization[J]. Reprod Toxicol, 2021, 101:28-32. doi: 10.1016/j.reprotox.2021.02.005.
pmid: 33610732 |
[27] |
Chioccarelli T, Falco G, Cappetta D, et al. FUS driven circCNOT6L biogenesis in mouse and human spermatozoa supports zygote development[J]. Cell Mol Life Sci, 2021, 79(1):50. doi: 10.1007/s00018-021-04054-8.
pmid: 34936029 |
[28] | Biellmann F, Hülsmeier AJ, Zhou D, et al. The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo[J]. BMC Dev Biol, 2008,8:109. doi: 10.1186/1471-213X-8-109. |
[29] | Wang L, Magdaleno S, Tabas I, et al. Early embryonic lethality in mice with targeted deletion of the CTP: phosphocholine cytidylyltransferase alpha gene (Pcyt1a)[J]. Mol Cell Biol, 2005, 25(8):3357-3363. doi: 10.1128/MCB.25.8.3357-3363.2005. |
[30] | Zhou D, Wu H, Wang L, et al. Deficiency of MFSD6L, an acrosome membrane protein, causes oligoasthenoteratozoospermia in humans and mice[J]. J Genet Genomics, 2024, 51(10):1007-1019. doi: 10.1016/j.jgg.2024.06.008. |
[31] | Sugita H, Takarabe S, Kageyama A, et al. Molecular Mechanism of Oocyte Activation in Mammals: Past, Present, and Future Directions[J]. Biomolecules, 2024, 14(3):359. doi: 10.3390/biom14030359. |
[32] | Nakai M, Suzuki SI, Fuchimoto DI, et al. Oocyte activation with phospholipase Cζ mRNA induces repetitive intracellular Ca(2+) rises and improves the quality of pig embryos after intracytoplasmic sperm injection[J]. J Reprod Dev, 2024, 70(4):229-237. doi: 10.1262/jrd.2023-105. |
[33] |
Joshi A, Rienks M, Theofilatos K, et al. Systems biology in cardiovascular disease: a multiomics approach[J]. Nat Rev Cardiol, 2021, 18(5):313-330. doi: 10.1038/s41569-020-00477-1.
pmid: 33340009 |
[34] | Wu H, Zhang X, Yang J, et al. Taurine and its transporter TAUT positively affect male reproduction and early embryo development[J]. Hum Reprod, 2022, 37(6):1229-1243. doi: 10.1093/humrep/deac089. |
[1] | CHEN Xue-hua, ZHOU Hong, WANG Cai-zhu. Research Progress of Noninvasive Embryo Screening in IVF-ET [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 41-46. |
[2] | LIU Yu-bin, XUE Tao, CHEN Qin-yi, HE Xin-yun, LIU Yue. Environmental Stressors Regulating Sperm Non-Coding RNA Involved in Intergenerational Inheritance [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 65-70. |
[3] | XU Shan, MENG Jiang-ping. Research Progress on Sperm DNA Damage in Assisted Reproductive Technology [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 71-77. |
[4] | JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian. Research Progress on the Correlation between Oxidative Stress and Aneuploidy in Oocytes of Aging Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 415-419. |
[5] | XIE Yu-xin, WANG Rui-xue, CHEN Meng-na, CHU Ji-jun. The Role of Annexin A Family at Maternal-Fetal Interface and Related Adverse Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 430-434. |
[6] | LI Jia-li, TU Xu-xu, WANG Shi-meng, NIU Ding-ren, FENG Xiao-ling. Recurrent Spontaneous Abortion Related to Oxidative Stress at Maternal-Fetal Interface [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 435-440. |
[7] | JIAO Meng-wen, ZHANG Yue-wen, WANG Ling, MO Shao-kang. Advances in CircRNAs Research in Reproductive System [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 322-327. |
[8] | ZHAO An-qi, LIU Lin, TAN Xiao-fang. HPV Transmission through Sperm and Its Impact on Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 328-331. |
[9] | LI Miao-miao, JIANG Hong, CAI Peng-da. Influence Factor Analysis and Forecasting Research of Embryonic Arrest [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 332-337. |
[10] | ZHUANG Jian-long, JIANG Yu-ying, ZENG Shu-hong, CHEN Xin-ying. Genetic Analysis of A Family with Recurrent Spontaneous Abortion Using FISH Combined with Chromosome Karyotype [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 201-203. |
[11] | WU Zhu-lian, WANG Cai-zhu, ZHOU Hong, CHEN Huan-hua, LIN Ruo-yun, SHU Jin-hui. Research Progress on the Cryopreservation of Small Numbers of Human Sperm [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 222-227. |
[12] | YE Lin, HOU Zhi-jin, MENG Yu-shi. Research Progress of Sirolimus in the Field of Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 132-137. |
[13] | YAN Hui-hui, ZHANG Yun-shan. Clinical Research Status of Mosaic Embryo Transfer [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 503-506. |
[14] | HE Yue, CUI Hong-mei. Research Progress of Ferroptosis in Obstetric Diseases [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 414-418. |
[15] | ZHU Meng-yi, GAO Jing-shu, WANG Yu, FENG Jia-xing, ZHANG Bei, WU Xiao-ke. Research Progress of Growth Differentiation Factor 15 and Adverse Pregnancy Outcomes [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 419-423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||