[1] |
Escobar-Morreale HF. Polycystic ovary syndrome: definition,aetiology,diagnosis and treatment[J]. Nat Rev Endocrinol, 2018,14(5):270-284. doi: 10.1038/nrendo.2018.24.
|
[2] |
Li R, Zhang Q, Yang D, et al. Prevalence of polycystic ovary syndrome in women in China: a large community-based study[J]. Hum Reprod, 2013,28(9):2562-2569. doi: 10.1093/humrep/det262.
|
[3] |
Cooney LG, Dokras A. Beyond fertility: polycystic ovary syndrome and long-term health[J]. Fertil Steril, 2018,110(5):794-809. doi: 10.1016/j.fertnstert.2018.08.021.
|
[4] |
Neven A, Laven J, Teede HJ, et al. A Summary on Polycystic Ovary Syndrome: Diagnostic Criteria,Prevalence,Clinical Manifestations,and Management According to the Latest International Guidelines[J]. Semin Reprod Med, 2018,36(1):5-12. doi: 10.1055/s-0038-1668085.
|
[5] |
Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome[J]. Hum Reprod, 2018,33(9):1602-1618. doi: 10.1093/humrep/dey256.
|
[6] |
Coyle C, Campbell RE. Pathological pulses in PCOS[J]. Mol Cell Endocrinol, 2019,498:110561. doi: 10.1016/j.mce.2019.110561.
|
[7] |
Hu Q, Jin J, Zhou H, et al. Crocetin attenuates DHT-induced polycystic ovary syndrome in mice via revising kisspeptin neurons[J]. Biomed Pharmacother, 2018,107:1363-1369. doi: 10.1016/j.biopha.2018.08.135.
|
[8] |
Tata B, Mimouni N, Barbotin AL, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood[J]. Nat Med, 2018,24(6):834-846. doi: 10.1038/s41591-018-0035-5.
|
[9] |
Coutinho EA, Kauffman AS. The Role of the Brain in the Pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS)[J]. Med Sci (Basel), 2019,7(8):84. doi: 10.3390/medsci7080084.
|
[10] |
Walters KA, Gilchrist RB, Ledger WL, et al. New Perspectives on the Pathogenesis of PCOS: Neuroendocrine Origins[J]. Trends Endocrinol Metab, 2018,29(12):841-852. doi: 10.1016/j.tem.2018.08.005.
|
[11] |
Roland AV, Moenter SM. Prenatal androgenization of female mice programs an increase in firing activity of gonadotropin-releasing hormone (GnRH) neurons that is reversed by metformin treatment in adulthood[J]. Endocrinology, 2011,152(2):618-628. doi: 10.1210/en.2010-0823.
|
[12] |
Pielecka J, Quaynor SD, Moenter SM. Androgens increase gonadotropin-releasing hormone neuron firing activity in females and interfere with progesterone negative feedback[J]. Endocrinology, 2006,147(3):1474-1479. doi: 10.1210/en.2005-1029.
|
[13] |
Moore AM, Prescott M, Campbell RE. Estradiol negative and positive feedback in a prenatal androgen-induced mouse model of polycystic ovarian syndrome[J]. Endocrinology, 2013,154(2):796-806. doi: 10.1210/en.2012-1954.
|
[14] |
Hrabovszky E, Kalló I, Szlávik N, et al. Gonadotropin-releasing hormone neurons express estrogen receptor-beta[J]. J Clin Endocrinol Metab, 2007,92(7):2827-2830. doi: 10.1210/jc.2006-2819.
|
[15] |
Ruddenklau A, Campbell RE. Neuroendocrine Impairments of Polycystic Ovary Syndrome[J]. Endocrinology, 2019,160(10):2230-2242. doi: 10.1210/en.2019-00428.
|
[16] |
Caldwell A, Edwards MC, Desai R, et al. Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome[J]. Proc Natl Acad Sci U S A, 2017,114(16):E3334-E3343. doi: 10.1073/pnas.1616467114.
|
[17] |
He W, Li X, Adekunbi D, et al. Hypothalamic effects of progesterone on regulation of the pulsatile and surge release of luteinising hormone in female rats[J]. Sci Rep, 2017,7(1):8096. doi: 10.1038/s41598-017-08805-1.
|
[18] |
Goodman RL, Holaskova I, Nestor CC, et al. Evidence that the arcuate nucleus is an important site of progesterone negative feedback in the ewe[J]. Endocrinology, 2011,152(9):3451-3460. doi: 10.1210/en.2011-0195.
|
[19] |
Yeo SH, Herbison AE. Estrogen-negative feedback and estrous cyclicity are critically dependent upon estrogen receptor-α expression in the arcuate nucleus of adult female mice[J]. Endocrinology, 2014,155(8):2986-2995. doi: 10.1210/en.2014-1128.
|
[20] |
Moore AM, Prescott M, Marshall CJ, et al. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome[J]. Proc Natl Acad Sci U S A, 2015,112(2):596-601. doi: 10.1073/pnas.1415038112.
|
[21] |
Cheng G, Coolen LM, Padmanabhan V, et al. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep[J]. Endocrinology, 2010,151(1):301-311. doi: 10.1210/en.2009-0541.
|
[22] |
Umayal B, Jayakody SN, Chandrasekharan NV, et al. Polycystic ovary syndrome (PCOS) and kisspeptin - A Sri Lankan study[J]. J Postgrad Med, 2019,65(1):18-23. doi: 10.4103/jpgm.JPGM_683_17.
|
[23] |
Gorkem U, Togrul C, Arslan E, et al. Is there a role for kisspeptin in pathogenesis of polycystic ovary syndrome?[J]. Gynecol Endocrinol, 2018,34(2):157-160. doi: 10.1080/09513590.2017.1379499.
|
[24] |
Wang T, Han S, Tian W, et al. Effects of kisspeptin on pathogenesis and energy metabolism in polycystic ovarian syndrome (PCOS)[J]. Gynecol Endocrinol, 2019,35(9):807-810. doi: 10.1080/09513590.2019.1597343.
|
[25] |
Katulski K, Podfigurna A, Czyzyk A, et al. Kisspeptin and LH pulsatile temporal coupling in PCOS patients[J]. Endocrine, 2018,61(1):149-157. doi: 10.1007/s12020-018-1609-1.
|
[26] |
Moore AM, Campbell RE. Polycystic ovary syndrome: Understanding the role of the brain[J]. Front Neuroendocrinol, 2017,46:1-14. doi: 10.1016/j.yfrne.2017.05.002.
|
[27] |
Roland AV, Moenter SM. Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models[J]. Front Neuroendocrinol, 2014,35(4):494-511. doi: 10.1016/j.yfrne.2014.04.002.
|
[28] |
George JT, Kakkar R, Marshall J, et al. Neurokinin B Receptor Antagonism in Women With Polycystic Ovary Syndrome: A Randomized,Placebo-Controlled Trial[J]. J Clin Endocrinol Metab, 2016,101(11):4313-4321. doi: 10.1210/jc.2016-1202.
|
[29] |
Osuka S, Iwase A, Nakahara T, et al. Kisspeptin in the Hypothalamus of 2 Rat Models of Polycystic Ovary Syndrome[J]. Endocrinology, 2017,158(2):367-377. doi: 10.1210/en.2016-1333.
|
[30] |
Kawwass JF, Sanders KM, Loucks TL, et al. Increased cerebrospinal fluid levels of GABA, testosterone and estradiol in women with polycystic ovary syndrome[J]. Hum Reprod, 2017,32(7):1450-1456. doi: 10.1093/humrep/dex086.
|
[31] |
Hu X, Wang J, Dong W, et al. A meta-analysis of polycystic ovary syndrome in women taking valproate for epilepsy[J]. Epilepsy Res, 2011,97(1/2):73-82. doi: 10.1016/j.eplepsyres.2011.07.006.
|
[32] |
Silva M, Desroziers E, Hessler S, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: Implications for polycystic ovary syndrome[J]. EBioMedicine, 2019,44:582-596. doi: 10.1016/j.ebiom.2019.05.065.
|
[33] |
Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder[J]. Proc Natl Acad Sci U S A, 2004,101(18):7129-7134. doi: 10.1073/pnas.0308058101.
|
[34] |
Blank SK, McCartney CR, Chhabra S, et al. Modulation of gonadotropin-releasing hormone pulse generator sensitivity to progesterone inhibition in hyperandrogenic adolescent girls--implications for regulation of pubertal maturation[J]. J Clin Endocrinol Metab, 2009,94(7):2360-2366. doi: 10.1210/jc.2008-2606.
|
[35] |
Lundgren JA, Kim SH, Burt Solorzano CM, et al. Progesterone Suppression of Luteinizing Hormone Pulse Frequency in Adolescent Girls With Hyperandrogenism: Effects of Metformin[J]. J Clin Endocrinol Metab, 2018,103(1):263-270. doi: 10.1210/jc.2017-02068.
|
[36] |
Polak K, Czyzyk A, Simoncini T, et al. New markers of insulin resistance in polycystic ovary syndrome[J]. J Endocrinol Invest, 2017,40(1):1-8. doi: 10.1007/s40618-016-0523-8.
|
[37] |
Silva MS, Prescott M, Campbell RE. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS[J]. JCI Insight, 2018,3(7):e99405. doi: 10.1172/jci.insight.99405.
|