[1] |
Siddiqui S, Mateen S, Ahmad R, et al. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS)[J]. J Assist Reprod Genet, 2022, 39(11):2439-2473. doi: 10.1007/s10815-022-02625-7.
|
[2] |
Stringer JM, Alesi LR, Winship AL, et al. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life[J]. Hum Reprod Update, 2023, 29(4):434-456. doi: 10.1093/humupd/dmad005.
pmid: 36857094
|
[3] |
Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19):e108863. doi: 10.15252/embj.2021108863.
|
[4] |
Esmaeilian Y, Hela F, Bildik G, et al. Autophagy regulates sex steroid hormone synthesis through lysosomal degradation of lipid droplets in human ovary and testis[J]. Cell Death Dis, 2023, 14(5):342. doi: 10.1038/s41419-023-05864-3.
pmid: 37236920
|
[5] |
Bhardwaj JK, Paliwal A, Saraf P, et al. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary[J]. J Cell Physiol, 2022, 237(2):1157-1170. doi: 10.1002/jcp.30613.
|
[6] |
Kirkin V. History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today?[J]. J Mol Biol, 2020, 432(1):3-27. doi: 10.1016/j.jmb.2019.05.010.
pmid: 31082435
|
[7] |
Levine B, Kroemer G. Biological Functions of Autophagy Genes: A Disease Perspective[J]. Cell, 2019, 176(1/2):11-42. doi: 10.1016/j.cell.2018.09.048.
|
[8] |
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(6):349-364. doi: 10.1038/s41580-018-0003-4.
|
[9] |
Cao W, Li J, Yang K, et al. An overview of autophagy: Mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3):304-322. doi: 10.1016/j.bulcan.2020.11.004.
pmid: 33423775
|
[10] |
夏宇. 巨噬细胞ATP6V0d2通过促进自噬体-溶酶体融合抑制炎症小体活化和相关炎症性疾病[D]. 武汉: 华中科技大学, 2018.
|
[11] |
Wang X, Yang J, Li H, et al. miR-484 mediates oxidative stress-induced ovarian dysfunction and promotes granulosa cell apoptosis via SESN2 downregulation[J]. Redox Biol, 2023,62:102684. doi: 10.1016/j.redox.2023.102684.
|
[12] |
He H, Wang J, Mou X, et al. Selective autophagic degradation of ACLY(ATP citrate lyase) maintains citrate homeostasis and promotes oocyte maturation[J]. Autophagy, 2023, 19(1):163-179. doi: 10.1080/15548627.2022.2063005.
|
[13] |
Xie QE, Wang MY, Cao ZP, et al. Melatonin protects against excessive autophagy-induced mitochondrial and ovarian reserve function deficiency though ERK signaling pathway in Chinese hamster ovary (CHO) cells[J]. Mitochondrion, 2021, 61:44-53. doi: 10.1016/j.mito.2021.09.009.
pmid: 34571250
|
[14] |
Li D, You Y, Bi FF, et al. Autophagy is activated in the ovarian tissue of polycystic ovary syndrome[J]. Reproduction, 2018, 155(1):85-92. doi: 10.1530/REP-17-0499.
pmid: 29030491
|
[15] |
Salehi R, Mazier HL, Nivet AL, et al. Ovarian mitochondrial dynamics and cell fate regulation in an androgen-induced rat model of polycystic ovarian syndrome[J]. Sci Rep, 2020, 10(1):1021. doi: 10.1038/s41598-020-57672-w.
pmid: 31974436
|
[16] |
Wang F, Han J, Wang X, et al. Roles of HIF-1α/BNIP3 mediated mitophagy in mitochondrial dysfunction of letrozole-induced PCOS rats[J]. J Mol Histol, 2022, 53(5):833-842. doi: 10.1007/s10735-022-10096-4.
pmid: 35951252
|
[17] |
Zhang L, Wang F, Li D, et al. Transferrin receptor-mediated reactive oxygen species promotes ferroptosis of KGN cells via regulating NADPH oxidase 1/PTEN induced kinase 1/acyl-CoA synthetase long chain family member 4 signaling[J]. Bioengineered, 2021, 12(1):4983-4994. doi: 10.1080/21655979.2021.1956403.
pmid: 34369274
|
[18] |
Yi S, Zheng B, Zhu Y, et al. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS[J]. Am J Physiol Endocrinol Metab, 2020, 319(1):E91-E101. doi: 10.1152/ajpendo.00006.2020.
|
[19] |
Wu M, Zhang J, Gu R, et al. The role of Sirtuin 1 in the pathophysiology of polycystic ovary syndrome[J]. Eur J Med Res, 2022, 27(1):158. doi: 10.1186/s40001-022-00746-4.
pmid: 36030228
|
[20] |
Sun L, Tian H, Xue S, et al. Circadian Clock Genes REV-ERBs Inhibits Granulosa Cells Apoptosis by Regulating Mitochondrial Biogenesis and Autophagy in Polycystic Ovary Syndrome[J]. Front Cell Dev Biol, 2021,9:658112. doi: 10.3389/fcell.2021.658112.
|
[21] |
Tao T, Xu H. Autophagy and Obesity-Related Reproductive Dysfunction[J]. Adv Exp Med Biol, 2020,1207:463-466. doi: 10.1007/978-981-15-4272-5_33.
|
[22] |
巩晓芸, 韩锐, 张于念, 等. MIF通过诱导自噬促进卵巢颗粒细胞的胰岛素抵抗[J]. 安徽医科大学学报, 2022, 57(10):1602-1608. doi: 10.19405/j.cnki.issn1000-1492.2022.10.017.
|
[23] |
Zhang C, Hu J, Wang W, et al. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS[J]. FASEB J, 2020, 34(7):9563-9574. doi: 10.1096/fj.202000605RR.
pmid: 32469087
|
[24] |
Li X, Qi J, Zhu Q, et al. The role of androgen in autophagy of granulosa cells from PCOS[J]. Gynecol Endocrinol, 2019, 35(8):669-672. doi: 10.1080/09513590.2018.1540567.
pmid: 31056990
|
[25] |
Xing J, Qiao G, Luo X, et al. Ferredoxin 1 regulates granulosa cell apoptosis and autophagy in polycystic ovary syndrome[J]. Clin Sci(Lond), 2023, 137(6):453-468. doi: 10.1042/CS20220408.
|
[26] |
Shen M, Jiang Y, Guan Z, et al. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy[J]. Autophagy, 2017, 13(8):1364-1385. doi: 10.1080/15548627.2017.1327941.
pmid: 28598230
|
[27] |
杨潇曼, 王克华, 王晓丹, 等. miRNA-2861、miRNA-483-3p与多囊卵巢综合征患者内分泌代谢及卵母细胞质量的相关性[J]. 现代妇产科进展, 2021, 30(9):666-669,674. doi: 10.13283/j.cnki.xdfckjz.2021.09.004.
|
[28] |
Chen Q, Li Z, Xu Z, et al. miR-378d is Involved in the Regulation of Apoptosis and Autophagy of and E2 Secretion from Cultured Ovarian Granular Cells Treated by Sodium Fluoride[J]. Biol Trace Elem Res, 2021, 199(11):4119-4128. doi: 10.1007/s12011-020-02524-x.
pmid: 33405077
|
[29] |
Guo H, Pu M, Tai Y, et al. Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy[J]. Cell Death Differ, 2021, 28(1):320-336. doi: 10.1038/s41418-020-0602-4.
|
[30] |
王雪敏, 王亚楠, 牛爱琴, 等. 微RNA-30b-5p通过靶向Atg5抑制多囊卵巢综合征大鼠卵巢颗粒细胞自噬[J]. 上海交通大学学报(医学版), 2023, 43(1):20-28. doi: 10.3969/j.issn.1674-8115.2023.01.003.
|
[31] |
Li Y, Zhang J, Liu YD, et al. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome[J]. RNA Biol, 2020, 17(12):1798-1810. doi: 10.1080/15476286.2020.1783850.
|
[32] |
Xu C, Luo M, Liu X, et al. MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase[J]. Cell Tissue Res, 2023, 392(3):763-778. doi: 10.1007/s00441-023-03747-9.
|
[33] |
Li Y, Liu YD, Zhou XY, et al. Let-7e modulates the proliferation and the autophagy of human granulosa cells by suppressing p21 signaling pathway in polycystic ovary syndrome without hyperandrogenism[J]. Mol Cell Endocrinol, 2021,535:111392. doi:10.1016/j.mce.2021.111392.
|