国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (6): 504-508.doi: 10.12280/gjszjk.20220335
收稿日期:
2022-07-11
出版日期:
2022-11-15
发布日期:
2022-11-18
通讯作者:
张翠莲
E-mail:luckyzcl@qq.com
基金资助:
ZHANG Lei, LIANG Lin-lin, FENG Ke, MENG Li, ZHANG Cui-lian()
Received:
2022-07-11
Published:
2022-11-15
Online:
2022-11-18
Contact:
ZHANG Cui-lian
E-mail:luckyzcl@qq.com
摘要:
排卵障碍性不孕症是临床中常见的不孕症类型,是由于患者存在内分泌紊乱、染色体和基因异常、药物损伤和卵巢病变等因素导致无排卵或稀发排卵,影响精子与卵子的结合,最终导致不孕。自噬是细胞内组分降解与再利用的重要方式,存在于多种生理和病理过程中,包括卵巢储备、卵泡发育和闭锁等。研究表明,引起排卵障碍的多种疾病中存在卵巢内自噬异常:多囊卵巢综合征中自噬活性升高,早发性卵巢功能不全和卵巢早衰中自噬水平异常增加或减少,卵巢子宫内膜异位囊肿中自噬处于抑制状态。包括哺乳动物雷帕霉素靶蛋白在内的多种信号通路参与调控卵泡颗粒细胞和卵母细胞中的自噬。自噬关键因子的缺失和突变,以及过度激活均会影响颗粒细胞的增殖、凋亡和分泌功能,从而阻碍卵泡正常发育和排卵。二甲双胍和一些激素类药物能够参与自噬过程的调节。总之,自噬在排卵障碍性不孕症的发生过程中起重要的调控作用。
张磊, 梁琳琳, 冯科, 孟励, 张翠莲. 自噬在排卵障碍性不孕症中的作用[J]. 国际生殖健康/计划生育, 2022, 41(6): 504-508.
ZHANG Lei, LIANG Lin-lin, FENG Ke, MENG Li, ZHANG Cui-lian. Autophagy in Mechanism of Ovulatory Dysfunction Infertility[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 504-508.
[1] |
Bhardwaj JK, Paliwal A, Saraf P, et al. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary[J]. J Cell Physiol, 2022, 237(2):1157-1170. doi: 10.1002/jcp.30613.
doi: 10.1002/jcp.30613 URL |
[2] |
Kumariya S, Ubba V, Jha RK, et al. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective[J]. Autophagy, 2021, 17(10):2706-2733. doi: 10.1080/15548627.2021.1938914.
doi: 10.1080/15548627.2021.1938914 URL |
[3] |
Cao W, Li J, Yang K, et al. An overview of autophagy: Mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3):304-322. doi: 10.1016/j.bulcan.2020.11.004.
doi: 10.1016/j.bulcan.2020.11.004 URL |
[4] |
Yang Q, Wang R, Zhu L. Chaperone-Mediated Autophagy[J]. Adv Exp Med Biol, 2019, 1206:435-452. doi: 10.1007/978-981-15-0602-4_20.
doi: 10.1007/978-981-15-0602-4_20 pmid: 31776997 |
[5] |
Yadav PK, Tiwari M, Gupta A, et al. Germ cell depletion from mammalian ovary: possible involvement of apoptosis and autophagy[J]. J Biomed Sci, 2018, 25(1):36. doi: 10.1186/s12929-018-0438-0.
doi: 10.1186/s12929-018-0438-0 pmid: 29681242 |
[6] |
Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions[J]. Cell Death Differ, 2020, 27(3):858-871. doi: 10.1038/s41418-019-0480-9.
doi: 10.1038/s41418-019-0480-9 pmid: 31900427 |
[7] |
Devis-Jauregui L, Eritja N, Davis ML, et al. Autophagy in the physiological endometrium and cancer[J]. Autophagy, 2021, 17(5):1077-1095. doi: 10.1080/15548627.2020.1752548.
doi: 10.1080/15548627.2020.1752548 URL |
[8] |
Pourakbari R, Ahmadi H, Yousefi M, et al. Cell therapy in female infertility-related diseases: Emphasis on recurrent miscarriage and repeated implantation failure[J]. Life Sci, 2020, 258:118181. doi: 10.1016/j.lfs.2020.118181.
doi: 10.1016/j.lfs.2020.118181 URL |
[9] |
Carson SA, Kallen AN. Diagnosis and Management of Infertility: A Review[J]. JAMA, 2021, 326(1):65-76. doi: 10.1001/jama.2021.4788.
doi: 10.1001/jama.2021.4788 pmid: 34228062 |
[10] |
Liu S, Mo M, Xiao S, et al. Pregnancy Outcomes of Women With Polycystic Ovary Syndrome for the First In Vitro Fertilization Treatment: A Retrospective Cohort Study With 7678 Patients[J]. Front Endocrinol(Lausanne), 2020, 11:575337. doi: 10.3389/fendo.2020.575337.
doi: 10.3389/fendo.2020.575337 |
[11] |
Chon SJ, Umair Z, Yoon MS. Premature Ovarian Insufficiency: Past, Present, and Future[J]. Front Cell Dev Biol, 2021, 9:672890. doi: 10.3389/fcell.2021.672890.
doi: 10.3389/fcell.2021.672890 URL |
[12] |
Grotto S, Sudrié-Arnaud B, Drouin-Garraud V, et al. Dilated Cardiomyopathy and Premature Ovarian Failure Unveiling Propionic Aciduria[J]. Clin Chem, 2018, 64(4):752-754. doi: 10.1373/clinchem.2017.281246.
doi: 10.1373/clinchem.2017.281246 pmid: 29592908 |
[13] |
Lee D, Kim SK, Lee JR, et al. Management of endometriosis-related infertility: Considerations and treatment options[J]. Clin Exp Reprod Med, 2020, 47(1):1-11. doi: 10.5653/cerm.2019.02971.
doi: 10.5653/cerm.2019.02971 pmid: 32088944 |
[14] |
Ye W, Xie T, Song Y, et al. The role of androgen and its related signals in PCOS[J]. J Cell Mol Med, 2021, 25(4):1825-1837. doi: 10.1111/jcmm.16205.
doi: 10.1111/jcmm.16205 pmid: 33369146 |
[15] |
Qin Y, Li T, Zhao H, et al. Integrated Transcriptomic and Epigenetic Study of PCOS: Impact of Map3k1 and Map1lc3a Promoter Methylation on Autophagy[J]. Front Genet, 2021, 12:620241. doi: 10.3389/fgene.2021.620241.
doi: 10.3389/fgene.2021.620241 URL |
[16] |
王娇剑, 鲁娣, 陈然然, 等. 肥胖型PCOS患者的生物学特征和临床特征[J]. 国际生殖健康/计划生育杂志, 2022, 41(3):230-235. doi: 10.12280/gjszjk.20220067.
doi: 10.12280/gjszjk.20220067 |
[17] |
Luo X, Gong Y, Cai L, et al. Chemerin regulates autophagy to participate in polycystic ovary syndrome[J]. J Int Med Res, 2021, 49(11):3000605211058376. doi: 10.1177/03000605211058376.
doi: 10.1177/03000605211058376 |
[18] |
彭洋洋, 谢青贞. 雄激素在多囊卵巢综合征合并非酒精性脂肪性肝病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2021, 40(4):328-333. doi: 10.12280/gjszjk.20210022.
doi: 10.12280/gjszjk.20210022 |
[19] |
Li T, Dong G, Kang Y, et al. Increased homocysteine regulated by androgen activates autophagy by suppressing the mammalian target of rapamycin pathway in the granulosa cells of polycystic ovary syndrome mice[J]. Bioengineered, 2022, 13(4):10875-10888. doi: 10.1080/21655979.2022.2066608.
doi: 10.1080/21655979.2022.2066608 pmid: 35485387 |
[20] |
Xu B, Dai W, Liu L, et al. Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway[J]. Endocr J, 2022, 69(7):863-875. doi: 10.1507/endocrj.EJ21-0480.
doi: 10.1507/endocrj.EJ21-0480 pmid: 35228471 |
[21] |
Song ZH, Yu HY, Wang P, et al. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice[J]. Cell Death Dis, 2015, 6(1):e1589. doi: 10.1038/cddis.2014.559.
doi: 10.1038/cddis.2014.559 URL |
[22] |
Delcour C, Amazit L, Patino LC, et al. ATG7 and ATG9A loss-of-function variants trigger autophagy impairment and ovarian failure[J]. Genet Med, 2019, 21(4):930-938. doi: 10.1038/s41436-018-0287-y.
doi: 10.1038/s41436-018-0287-y pmid: 30224786 |
[23] |
Li Z, Zhang M, Tian Y, et al. Mesenchymal Stem Cells in Premature Ovarian Insufficiency: Mechanisms and Prospects[J]. Front Cell Dev Biol, 2021, 9:718192. doi: 10.3389/fcell.2021.718192.
doi: 10.3389/fcell.2021.718192 URL |
[24] |
程铭, 贾婵维, 刘英. 早发性卵巢功能不全的临床诊疗进展[J]. 国际生殖健康/计划生育杂志, 2021, 40(2):137-141. doi: 10.12280/gjszjk.20200169.
doi: 10.12280/gjszjk.20200169 |
[25] |
Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation[J]. Biotechnol Appl Biochem, 2022, 69(1):248-264. doi: 10.1002/bab.2104.
doi: 10.1002/bab.2104 URL |
[26] |
Lu X, Bao H, Cui L, et al. hUMSC transplantation restores ovarian function in POI rats by inhibiting autophagy of theca-interstitial cells via the AMPK/mTOR signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1):268. doi: 10.1186/s13287-020-01784-7.
doi: 10.1186/s13287-020-01784-7 pmid: 32620136 |
[27] |
Yin N, Wu C, Qiu J, et al. Protective properties of heme oxygenase-1 expressed in umbilical cord mesenchymal stem cells help restore the ovarian function of premature ovarian failure mice through activating the JNK/Bcl-2 signal pathway-regulated autophagy and upregulating the circulating of CD8(+)CD28(-) T cells[J]. Stem Cell Res Ther, 2020, 11(1):49. doi: 10.1186/s13287-019-1537-x.
doi: 10.1186/s13287-019-1537-x |
[28] |
Tamura H, Jozaki M, Tanabe M, et al. Importance of Melatonin in Assisted Reproductive Technology and Ovarian Aging[J]. Int J Mol Sci, 2020, 21(3):1135. doi: 10.3390/ijms21031135.
doi: 10.3390/ijms21031135 URL |
[29] |
Xie QE, Wang MY, Cao ZP, et al. Melatonin protects against excessive autophagy-induced mitochondrial and ovarian reserve function deficiency though ERK signaling pathway in Chinese hamster ovary (CHO) cells[J]. Mitochondrion, 2021, 61:44-53. doi: 10.1016/j.mito.2021.09.009.
doi: 10.1016/j.mito.2021.09.009 pmid: 34571250 |
[30] |
Yang S, Wang H, Li D, et al. Role of Endometrial Autophagy in Physiological and Pathophysiological Processes[J]. J Cancer, 2019, 10(15):3459-3471. doi: 10.7150/jca.31742.
doi: 10.7150/jca.31742 pmid: 31293650 |
[31] |
Choi J, Jo M, Lee E, et al. Differential induction of autophagy by mTOR is associated with abnormal apoptosis in ovarian endometriotic cysts[J]. Mol Hum Reprod, 2014, 20(4):309-317. doi: 10.1093/molehr/gat091.
doi: 10.1093/molehr/gat091 pmid: 24319109 |
[32] |
Choi J, Jo M, Lee E, et al. Inhibition of the NLRP3 inflammasome by progesterone is attenuated by abnormal autophagy induction in endometriotic cyst stromal cells: implications for endometriosis[J]. Mol Hum Reprod, 2022, 28(4):gaac007. doi: 10.1093/molehr/gaac007.
doi: 10.1093/molehr/gaac007 URL |
[33] |
Al-Bari MAA, Xu PY. Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways[J]. Annals of the New York Academy of Sciences, 2020, 1467(1):3-20. doi: 10.1111/nyas.14305.
doi: 10.1111/nyas.14305 URL |
[34] |
Goldman KN, Chenette D, Arju R, et al. mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy[J]. Proc Natl Acad Sci U S A, 2017, 114(12):3186-3191. doi: 10.1073/pnas.1617233114.
doi: 10.1073/pnas.1617233114 pmid: 28270607 |
[1] | 李安琪, 朱梦一, 王宇, 高敬书, 吴效科. 丹参酮在多囊卵巢综合征治疗中的潜在价值及其机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 494-500. |
[2] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[3] | 乔新月, 陶爱琳, 冯晓玲, 陈璐. 多囊卵巢综合征伴焦虑、抑郁障碍的相关性研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 506-511. |
[4] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[5] | 高征, 李梦元, 李博, 梁婧翘, 张雅冬, 许昕. 中药复方干预肥胖型多囊卵巢综合征糖脂代谢异常的Meta分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 368-377. |
[6] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[7] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[8] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[9] | 石百超, 常惠, 王宇, 卢凤娟, 王凯悦, 关木馨, 马良, 吴效科. 肠道菌群在多囊卵巢综合征中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 238-242. |
[10] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
[11] | 代鹤琦, 毛菲, 冯睿芝, 钱云. lncRNA作为ceRNA在多囊卵巢综合征中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 144-149. |
[12] | 甄佳, 赵紫渊, 王子璐, 师伟, 徐丽. 多囊卵巢综合征病理机制中的颗粒细胞自噬[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 150-154. |
[13] | 任露露, 任文超, 张晓轩, 任春娥. 多囊卵巢综合征患者卵巢颗粒细胞胰岛素抵抗的相关信号通路[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 32-37. |
[14] | 刘一燃, 冯睿芝, 钱云. 多囊卵巢综合征中翻译后修饰的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 38-42. |
[15] | 周昕玥, 李宁, 魏林飞, 张学红. 肠道菌群及肠道代谢物与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 42-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||