国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (6): 476-481.doi: 10.12280/gjszjk.20220406
收稿日期:
2022-08-16
出版日期:
2022-11-15
发布日期:
2022-11-18
通讯作者:
马梲铫,丁之德
E-mail:1716578796@qq.com;zding@shsmu.edu.cn
基金资助:
MAO Xin-yi, XU Yu-wei, LI Wen-jing, MA Zhuo-yao(), DING Zhi-de(
)
Received:
2022-08-16
Published:
2022-11-15
Online:
2022-11-18
Contact:
MA Zhuo-yao,DING Zhi-de
E-mail:1716578796@qq.com;zding@shsmu.edu.cn
摘要:
对新型冠状病毒肺炎(COVID-19)影响的研究已不局限于呼吸系统,而是扩展到其他重要系统。研究表明,新型冠状病毒(SARS-CoV-2)可识别人体组织器官中的血管紧张素转换酶2受体,由此对两性生殖系统结构和功能造成损伤。对男性生殖系统,SARS-CoV-2可影响下丘脑-垂体-性腺轴功能、损害睾丸生精过程和影响精子质量;对女性生殖系统,SARS-CoV-2同样影响下丘脑-垂体-性腺轴功能;虽然孕产妇感染病毒后重症率较低,康复情况良好,但也可能发生不良妊娠结局。SARS-CoV-2对辅助生殖结局的影响可能比较轻微;但有研究指出,COVID-19患者如在促排卵期间出现卵巢过度刺激综合征,则会增加肺部与肾脏并发症的发生风险。另外,现阶段普遍接种的各种SARS-CoV-2疫苗均未见对生殖系统的影响,但COVID-19大流行引发的生殖意愿下降等心理健康问题仍需进一步研究。
茅欣怡, 许钰薇, 李文婧, 马梲铫, 丁之德. 新型冠状病毒对人类生殖系统的影响[J]. 国际生殖健康/计划生育, 2022, 41(6): 476-481.
MAO Xin-yi, XU Yu-wei, LI Wen-jing, MA Zhuo-yao, DING Zhi-de. The Detrimental Effects of COVID-19 on Human Reproduction[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 476-481.
[1] | WHO Coronavirus (COVID-19) Dashboard[EB/OL]. [2022-7-15]. https://covid19.who.int/?gclid=EAIaIQobChMI3N2MruKb7wIVGnZgCh2GtwgCEAAYASABEgJHO_D_BwE. |
[2] |
中华人民共和国国家卫生健康委员会, 中华人民共和国国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第九版)[J]. 中国医药, 2022, 17(4):481-487. doi: 10.3760/j.issn.1673-4777.2022.04.001.
doi: 10.3760/j.issn.1673-4777.2022.04.001 |
[3] |
Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China[J]. Cell Host Microbe, 2020, 27(3):325-328. doi: 10.1016/j.chom.2020.02.001.
doi: S1931-3128(20)30072-X pmid: 32035028 |
[4] |
Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins[J]. Annu Rev Virol, 2016, 3(1):237-261. doi: 10.1146/annurev-virology-110615-042301.
doi: 10.1146/annurev-virology-110615-042301 pmid: 27578435 |
[5] |
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798):270-273. doi: 10.1038/s41586-020-2012-7.
doi: 10.1038/s41586-020-2012-7 URL |
[6] |
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2[J]. Nature, 2020, 581(7807):221-224. doi: 10.1038/s41586-020-2179-y.
doi: 10.1038/s41586-020-2179-y URL |
[7] |
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus[J]. Microbiol Mol Biol Rev, 2005, 69(4):635-664. doi: 10.1128/mmbr.69.4.635-664.2005.
doi: 10.1128/mmbr.69.4.635-664.2005 URL |
[8] |
Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. Science, 2020, 367(6485):1444-1448. doi: 10.1126/science.abb2762.
doi: 10.1126/science.abb2762 URL |
[9] |
Heurich A, Hofmann-Winkler H, Gierer S, et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein[J]. J Virol, 2014, 88(2):1293-1307. doi: 10.1128/jvi.02202-13.
doi: 10.1128/JVI.02202-13 pmid: 24227843 |
[10] |
Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons from available evidence and insights into COVID-19[J]. Hypertens Res, 2020, 43(7):648-654. doi: 10.1038/s41440-020-0455-8.
doi: 10.1038/s41440-020-0455-8 pmid: 32341442 |
[11] |
Hikmet F, Méar L, Edvinsson Å, et al. The protein expression profile of ACE2 in human tissues[J]. Mol Syst Biol, 2020, 16(7):e9610. doi: 10.15252/msb.20209610.
doi: 10.15252/msb.20209610 |
[12] |
Shen Q, Xiao X, Aierken A, et al. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection[J]. J Cell Mol Med, 2020, 24(16):9472-9477. doi: 10.1111/jcmm.15541.
doi: 10.1111/jcmm.15541 URL |
[13] |
Ma L, Xie W, Li D, et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients[J]. J Med Virol, 2021, 93(1):456-462. doi: 10.1002/jmv.26259.
doi: 10.1002/jmv.26259 URL |
[14] |
Çayan S, Uğuz M, Saylam B, et al. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort study[J]. Aging Male, 2020, 23(5):1493-1503. doi: 10.1080/13685538.2020.1807930.
doi: 10.1080/13685538.2020.1807930 URL |
[15] |
Rastrelli G, Di Stasi V, Inglese F, et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients[J]. Andrology, 2021, 9(1):88-98. doi: 10.1111/andr.12821.
doi: 10.1111/andr.12821 URL |
[16] |
Yang M, Chen S, Huang B, et al. Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications[J]. Eur Urol Focus, 2020, 6(5):1124-1129. doi: 10.1016/j.euf.2020.05.009.
doi: S2405-4569(20)30144-9 pmid: 32563676 |
[17] |
Pan F, Xiao X, Guo J, et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019[J]. Fertil Steril, 2020, 113(6):1135-1139. doi: 10.1016/j.fertnstert.2020.04.024.
doi: S0015-0282(20)30384-8 pmid: 32482249 |
[18] |
Li D, Jin M, Bao P, et al. Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019[J]. JAMA Netw Open, 2020, 3(5):e208292. doi: 10.1001/jamanetworkopen.2020.8292.
doi: 10.1001/jamanetworkopen.2020.8292 URL |
[19] |
Best JC, Kuchakulla M, Khodamoradi K, et al. Evaluation of SARS-CoV-2 in Human Semen and Effect on Total Sperm Number: A Prospective Observational Study[J]. World J Mens Health, 2021, 39(3):489-495. doi: 10.5534/wjmh.200192.
doi: 10.5534/wjmh.200192 pmid: 33663031 |
[20] |
Madjunkov M, Dviri M, Librach C. A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: a Canadian perspective[J]. J Ovarian Res, 2020, 13(1):140. doi: 10.1186/s13048-020-00737-1.
doi: 10.1186/s13048-020-00737-1 pmid: 33246480 |
[21] |
Jing Y, Run-Qian L, Hao-Ran W, et al. Potential influence of COVID-19/ACE2 on the female reproductive system[J]. Mol Hum Reprod, 2020, 26(6):367-373. doi: 10.1093/molehr/gaaa030.
doi: 10.1093/molehr/gaaa030 pmid: 32365180 |
[22] |
Mauvais-Jarvis F, Klein SL, Levin ER. Estradiol, Progesterone, Immunomodulation, and COVID-19 Outcomes[J]. Endocrinology, 2020, 161(9):bqaa127. doi: 10.1210/endocr/bqaa127.
doi: 10.1210/endocr/bqaa127 URL |
[23] |
Santa S, Doku DA, Olwal CO, et al. Paradox of COVID-19 in pregnancy: are pregnant women more protected against or at elevated risk of severe COVID-19?[J]. Future Microbiol, 2022, 17:803-812. doi: 10.2217/fmb-2021-0233.
doi: 10.2217/fmb-2021-0233 pmid: 35510478 |
[24] |
Liu S, Dzakpasu S, Nelson C, et al. Pregnancy Outcomes During the COVID-19 Pandemic in Canada, March to August 2020[J]. J Obstet Gynaecol Can, 2021, 43(12):1406-1415. doi: 10.1016/j.jogc.2021.06.014.
doi: 10.1016/j.jogc.2021.06.014 pmid: 34332116 |
[25] |
Villar J, Ariff S, Gunier RB, et al. Maternal and Neonatal Morbidity and Mortality Among Pregnant Women With and Without COVID-19 Infection: The INTERCOVID Multinational Cohort Study[J]. JAMA Pediatr, 2021, 175(8):817-826. doi: 10.1001/jamapediatrics.2021.1050.
doi: 10.1001/jamapediatrics.2021.1050 URL |
[26] |
Monteleone PA, Nakano M, Lazar V, et al. A review of initial data on pregnancy during the COVID-19 outbreak: implications for assisted reproductive treatments[J]. JBRA Assist Reprod, 2020, 24(2):219-225. doi: 10.5935/1518-0557.20200030.
doi: 10.5935/1518-0557.20200030 pmid: 32301600 |
[27] |
Khan S, Jun L, Nawsherwan, et al. Association of COVID-19 with pregnancy outcomes in health-care workers and general women[J]. Clin Microbiol Infect, 2020, 26(6):788-790. doi: 10.1016/j.cmi.2020.03.034.
doi: 10.1016/j.cmi.2020.03.034 URL |
[28] |
Valdespino-Vázquez MY, Helguera-Repetto CA, León-Juárez M, et al. Fetal and placental infection with SARS-CoV-2 in early pregnancy[J]. J Med Virol, 2021, 93(7):4480-4487. doi: 10.1002/jmv.26965.
doi: 10.1002/jmv.26965 pmid: 33764543 |
[29] |
Kalampokas T, Rapani A, Papageorgiou M, et al. The Current Evidence Regarding COVID-19 and Pregnancy: Where Are We Now and Where Should We Head to Next?[J]. Viruses, 2021, 13(10):2000. doi: 10.3390/v13102000.
doi: 10.3390/v13102000 |
[30] |
Boushra MN, Koyfman A, Long B. COVID-19 in pregnancy and the puerperium: A review for emergency physicians[J]. Am J Emerg Med, 2021, 40:193-198. doi: 10.1016/j.ajem.2020.10.055.
doi: 10.1016/j.ajem.2020.10.055 pmid: 33162266 |
[31] |
Bahadur G, Homburg R, Yoong W, et al. Adverse outcomes in SAR-CoV-2 (COVID-19) and SARS virus related pregnancies with probable vertical transmission[J]. JBRA Assist Reprod, 2020, 24(3):351-357. doi: 10.5935/1518-0557.20200057.
doi: 10.5935/1518-0557.20200057 pmid: 32662955 |
[32] |
Batiha O, Al-Deeb T, Al-Zoubi E, et al. Impact of COVID-19 and other viruses on reproductive health[J]. Andrologia, 2020, 52(9):e13791. doi: 10.1111/and.13791.
doi: 10.1111/and.13791 |
[33] |
Youngster M, Avraham S, Yaakov O, et al. IVF under COVID-19: treatment outcomes of fresh ART cycles[J]. Hum Reprod, 2022, 37(5):947-953. doi: 10.1093/humrep/deac043.
doi: 10.1093/humrep/deac043 URL |
[34] |
Wang M, Yang Q, Ren X, et al. Investigating the impact of asymptomatic or mild SARS-CoV-2 infection on female fertility and in vitro fertilization outcomes: A retrospective cohort study[J]. EClinicalMedicine, 2021, 38:101013. doi: 10.1016/j.eclinm.2021.101013.
doi: 10.1016/j.eclinm.2021.101013 URL |
[35] |
Kolanska K, Hours A, Jonquière L, et al. Mild COVID-19 infection does not alter the ovarian reserve in women treated with ART[J]. Reprod Biomed Online, 2021, 43(6):1117-1121. doi: 10.1016/j.rbmo.2021.09.001.
doi: 10.1016/j.rbmo.2021.09.001 URL |
[36] |
La Marca A, Niederberger C, Pellicer A, et al. COVID-19: lessons from the Italian reproductive medical experience[J]. Fertil Steril, 2020, 113(5):920-922. doi: 10.1016/j.fertnstert.2020.03.021.
doi: S0015-0282(20)30297-1 pmid: 32222253 |
[37] |
Fabregues F, Peñarrubia J. Assisted reproduction and thromboembolic risk in the COVID-19 pandemic[J]. Reprod Biomed Online, 2020, 41(3):361-364. doi: 10.1016/j.rbmo.2020.06.013.
doi: S1472-6483(20)30338-2 pmid: 32660814 |
[38] |
Lee WY, Mok A, Chung JPW. Potential effects of COVID-19 on reproductive systems and fertility; assisted reproductive technology guidelines and considerations: a review[J]. Hong Kong Med J, 2021, 27(2):118-126. doi: 10.12809/hkmj209078.
doi: 10.12809/hkmj209078 pmid: 33853972 |
[39] |
Diaz P, Zizzo J, Balaji NC, et al. Fear about adverse effect on fertility is a major cause of COVID-19 vaccine hesitancy in the United States[J]. Andrologia, 2022, 54(4):e14361. doi: 10.1111/and.14361.
doi: 10.1111/and.14361 |
[40] |
Chen F, Zhu S, Dai Z, et al. Effects of COVID-19 and mRNA vaccines on human fertility[J]. Hum Reprod, 2021, 37(1):5-13. doi: 10.1093/humrep/deab238.
doi: 10.1093/humrep/deab238 URL |
[41] |
新冠病毒疫苗接种技术指南(第一版)[J]. 中国病毒病杂志, 2021, 11(3):161-162. doi: 10.16505/j.2095-0136.2021.0018.
doi: 10.16505/j.2095-0136.2021.0018 |
[42] |
Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine[J]. N Engl J Med, 2020, 383(27):2603-2615. doi: 10.1056/NEJMoa2034577.
doi: 10.1056/NEJMoa2034577 URL |
[43] |
Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine[J]. N Engl J Med, 2021, 384(5):403-416. doi: 10.1056/NEJMoa2035389.
doi: 10.1056/NEJMoa2035389 URL |
[44] |
Safrai M, Herzberg S, Imbar T, et al. The BNT162b2 mRNA Covid-19 vaccine does not impair sperm parameters[J]. Reprod Biomed Online, 2022, 44(4):685-688. doi: 10.1016/j.rbmo.2022.01.008.
doi: 10.1016/j.rbmo.2022.01.008 URL |
[45] |
Carto C, Nackeeran S, Ramasamy R. COVID-19 vaccination is associated with a decreased risk of orchitis and/or epididymitis in men[J]. Andrologia, 2022, 54(2):e14281. doi: 10.1111/and.14281.
doi: 10.1111/and.14281 |
[46] |
Bowman CJ, Bouressam M, Campion SN, et al. Lack of effects on female fertility and prenatal and postnatal offspring development in rats with BNT162b2, a mRNA-based COVID-19 vaccine[J]. Reprod Toxicol, 2021, 103:28-35. doi: 10.1016/j.reprotox.2021.05.007.
doi: 10.1016/j.reprotox.2021.05.007 pmid: 34058573 |
[47] |
Orvieto R, Noach-Hirsh M, Segev-Zahav A, et al. Does mRNA SARS-CoV-2 vaccine influence patients′ performance during IVF-ET cycle?[J]. Reprod Biol Endocrinol, 2021, 19(1):69. doi: 10.1186/s12958-021-00757-6.
doi: 10.1186/s12958-021-00757-6 URL |
[48] |
Bentov Y, Beharier O, Moav-Zafrir A, et al. Ovarian follicular function is not altered by SARS-CoV-2 infection or BNT162b2 mRNA COVID-19 vaccination[J]. Hum Reprod, 2021, 36(9):2506-2513. doi: 10.1093/humrep/deab182.
doi: 10.1093/humrep/deab182 URL |
[49] |
Bookstein Peretz S, Regev N, Novick L, et al. Short-term outcome of pregnant women vaccinated with BNT162b2 mRNA COVID-19 vaccine[J]. Ultrasound Obstet Gynecol, 2021, 58(3):450-456. doi: 10.1002/uog.23729.
doi: 10.1002/uog.23729 pmid: 34198360 |
[50] |
Wainstock T, Yoles I, Sergienko R, et al. Prenatal maternal COVID-19 vaccination and pregnancy outcomes[J]. Vaccine, 2021, 39(41):6037-6040. doi: 10.1016/j.vaccine.2021.09.012.
doi: 10.1016/j.vaccine.2021.09.012 pmid: 34531079 |
[51] |
Edlow AG, Li JZ, Collier AY, et al. Assessment of Maternal and Neonatal SARS-CoV-2 Viral Load, Transplacental Antibody Transfer, and Placental Pathology in Pregnancies During the COVID-19 Pandemic[J]. JAMA Netw Open, 2020, 3(12):e2030455. doi: 10.1001/jamanetworkopen.2020.30455.
doi: 10.1001/jamanetworkopen.2020.30455 URL |
[52] |
Durankuş F, Aksu E. Effects of the COVID-19 pandemic on anxiety and depressive symptoms in pregnant women: a preliminary study[J]. J Matern Fetal Neonatal Med, 2022, 35(2):205-211. doi: 10.1080/14767058.2020.1763946.
doi: 10.1080/14767058.2020.1763946 URL |
[53] |
Ben-Kimhy R, Youngster M, Medina-Artom TR, et al. Fertility patients under COVID-19: attitudes, perceptions and psychological reactions[J]. Hum Reprod, 2020, 35(12):2774-2783. doi: 10.1093/humrep/deaa248.
doi: 10.1093/humrep/deaa248 URL |
[54] |
Aassve A, Cavalli N, Mencarini L, et al. The COVID-19 pandemic and human fertility[J]. Science, 2020, 369(6502):370-371. doi: 10.1126/science.abc9520.
doi: 10.1126/science.abc9520 URL |
[1] | 宋丹妮, 朱蓉, 蒲丛珊, 王义婷, 姜微微, 胡双, 单春剑. 辅助生殖技术助孕患者痛苦表露的潜在剖面分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 441-446. |
[2] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[3] | 宫政, 王聪, 宋佳怡, 夏天. 基于数据挖掘探讨中医药在辅助生殖技术中的分期应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 361-367. |
[4] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[5] | 罗莎莎, 王德婧. 冻融胚胎移植妊娠结局相关影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 420-424. |
[6] | 赵安琪, 刘霖, 谭小方. HPV经精子传播及其对早期胚胎发育的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 328-331. |
[7] | 李宁, 张安妮, 何晓霞, 张学红. 冻融胚胎移植后妊娠期高血压疾病发生的列线图预测模型构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 177-184. |
[8] | 贺晴雯, 李喜红. 辅助生殖技术助孕患者的睡眠障碍及非药物干预的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 234-237. |
[9] | 谷旭照, 沈豪飞, 高敏, 刘阿慧, 王娜, 杨雯景, 张学红. 双子宫合并卵巢妊娠一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 118-120. |
[10] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
[11] | 郝佳丽, 何玉洁. 不孕不育人群生育生活质量评价及其影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 159-165. |
[12] | 田文艳, 罗营, 李小燕, 颜琪, 薛凤霞, 王颖梅, 张慧英. 45,X/47,XYY性发育异常一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 11-16. |
[13] | 李婷婷, 谭小方, 施蔚虹. 辅助生殖技术助孕后三胎合并双胎反向动脉灌注序列征一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 24-27. |
[14] | 李彩华, 郭培培, 姜小花, 方有燕, 周平, 魏兆莲. 卵泡期高孕激素状态下促排卵方案的应用进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 68-73. |
[15] | 叶明珠, 郑洁, 李杰芃, 许莉欣. 医源性卵巢储备功能减退患者的卵母细胞冷冻生育力保存应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 498-502. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||