国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (1): 83-88.doi: 10.12280/gjszjk.20220466
• 综述 • 上一篇
收稿日期:
2022-09-30
出版日期:
2023-01-15
发布日期:
2023-02-03
通讯作者:
任春娥
E-mail:chunerenwf@126.com
LI Guang-can, ZHAI Chao, ZHANG Xiao-xuan, REN Chun-e()
Received:
2022-09-30
Published:
2023-01-15
Online:
2023-02-03
Contact:
REN Chun-e
E-mail:chunerenwf@126.com
摘要:
宫腔粘连(intrauterine adhesion,IUA)的实质是子宫内膜基底层受损后引起的子宫内膜纤维化疾病。主要的临床表现有月经改变、不孕及妊娠丢失、反复的胚胎种植失败等,严重影响了育龄期妇女的生殖健康。IUA发生的分子机制较为复杂多样,是由多因素、多环节综合控制的。转化生长因子β1(transform growth factor-β1,TGF-β1)作为一类在调节细胞生长、分化、凋亡方面发挥重要作用的细胞因子,参与了人体多种疾病病理进展的重要环节。目前认为该细胞因子与组织纤维化密切相关,其过度表达会促进子宫内膜纤维化,加重IUA的程度。综述TGF-β1及其相关通路在IUA中的研究进展。
李光璨, 翟超, 张晓轩, 任春娥. 转化生长因子β1在宫腔粘连中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 83-88.
LI Guang-can, ZHAI Chao, ZHANG Xiao-xuan, REN Chun-e. Research Progress of Transform Growth Factor-β1 in Intrauterine Adhesions[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 83-88.
[1] |
Dreisler E, Kjer JJ. Asherman′s syndrome: current perspectives on diagnosis and management[J]. Int J Womens Health, 2019, 11:191-198. doi: 10.2147/IJWH.S165474.
doi: 10.2147/IJWH.S165474 pmid: 30936754 |
[2] |
Abudukeyoumu A, Li MQ, Xie F. Transforming growth factor-β1 in intrauterine adhesion[J]. Am J Reprod Immunol, 2020, 84(2):e13262. doi: 10.1111/aji.13262.
doi: 10.1111/aji.13262 |
[3] |
Deans R, Abbott J. Review of intrauterine adhesions[J]. J Minim Invasive Gynecol, 2010, 17(5):555-569. doi: 10.1016/j.jmig.2010.04.016.
doi: 10.1016/j.jmig.2010.04.016 URL |
[4] |
Yu D, Wong YM, Cheong Y, et al. Asherman syndrome--one century later[J]. Fertil Steril, 2008, 89(4):759-779. doi: 10.1016/j.fertnstert.2008.02.096.
doi: 10.1016/j.fertnstert.2008.02.096 pmid: 18406834 |
[5] |
van der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints[J]. Nat Rev Rheumatol, 2017, 13(3):155-163. doi: 10.1038/nrrheum.2016.219.
doi: 10.1038/nrrheum.2016.219 pmid: 28148919 |
[6] |
Liénart S, Merceron R, Vanderaa C, et al. Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells[J]. Science, 2018, 362(6417):952-956. doi: 10.1126/science.aau2909.
doi: 10.1126/science.aau2909 pmid: 30361387 |
[7] |
Xie F, Ling L, van Dam H, et al. TGF-β signaling in cancer metastasis[J]. Acta Biochim Biophys Sin(Shanghai), 2018, 50(1):121-132. doi: 10.1093/abbs/gmx123.
doi: 10.1093/abbs/gmx123 |
[8] |
Ma TT, Meng XM. TGF-β/Smad and Renal Fibrosis[J]. Adv Exp Med Biol, 2019, 1165:347-364. doi: 10.1007/978-981-13-8871-2_16.
doi: 10.1007/978-981-13-8871-2_16 |
[9] |
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis[J]. Front Pharmacol, 2017, 8:461. doi: 10.3389/fphar.2017.00461.
doi: 10.3389/fphar.2017.00461 pmid: 28769795 |
[10] |
颜小明, 张立婷, 李敏, 等. TGF-β1/Smad信号通路在肝纤维化中的研究进展[J]. 现代生物医学进展, 2016, 16(9):1778-1781, 1752. doi: 10.13241/j.cnki.pmb.2016.09.048.
doi: 10.13241/j.cnki.pmb.2016.09.048 |
[11] |
周钱辉, 彭红, 颜又新, 等. TGF-β1及其信号通路对话在肺纤维化中的研究进展[J]. 国际呼吸杂志, 2018, 38(4):315-320. doi: 10.3760/cma.j.issn.1673-436X.2018.04.015.
doi: 10.3760/cma.j.issn.1673-436X.2018.04.015 |
[12] |
Cui Y, Xin H, Tao Y, et al. Arenaria kansuensis attenuates pulmonary fibrosis in mice via the activation of Nrf2 pathway and the inhibition of NF-kB/TGF-beta1/Smad2/3 pathway[J]. Phytother Res, 2021, 35(2):974-986. doi: 10.1002/ptr.6857.
doi: 10.1002/ptr.6857 URL |
[13] |
Qiao X, Rao P, Zhang Y, et al. Redirecting TGF-β Signaling through the β-Catenin/Foxo Complex Prevents Kidney Fibrosis[J]. J Am Soc Nephrol, 2018, 29(2):557-570. doi: 10.1681/ASN.2016121362.
doi: 10.1681/ASN.2016121362 pmid: 29180394 |
[14] |
Xue X, Chen Q, Zhao G, et al. The Overexpression of TGF-β and CCN2 in Intrauterine Adhesions Involves the NF-κB Signaling Pathway[J]. PLoS One, 2015, 10(12):e0146159. doi: 10.1371/journal.pone.0146159.
doi: 10.1371/journal.pone.0146159 URL |
[15] |
Li P, Wang D, Lucas J, et al. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts[J]. Circ Res, 2008, 102(2):185-192. doi: 10.1161/CIRCRESAHA.107.157677.
doi: 10.1161/CIRCRESAHA.107.157677 pmid: 17991884 |
[16] |
Zheng R, Xiong Q, Zuo B, et al. Using RNA interference to identify the different roles of SMAD2 and SMAD3 in NIH/3T3 fibroblast cells[J]. Cell Biochem Funct, 2008, 26(5):548-556. doi: 10.1002/cbf.1464.
doi: 10.1002/cbf.1464 pmid: 18506886 |
[17] |
周赛, 万亚军, 肖芳, 等. TGF-β1、Smad3及Smad7在宫腔粘连患者粘连组织中的表达及意义[J]. 中国现代医学杂志, 2013, 23(32):62-65. doi: 10.3969/j.issn.1005-8982.2013.32.013.
doi: 10.3969/j.issn.1005-8982.2013.32.013 |
[18] |
Nygaard R, Yu J, Kim J, et al. Structural Basis of WLS/Evi-Mediated Wnt Transport and Secretion[J]. Cell, 2021, 184(1):194-206.e14. doi: 10.1016/j.cell.2020.11.038.
doi: 10.1016/j.cell.2020.11.038 pmid: 33357447 |
[19] |
Cao M, Chan R, Cheng F, et al. Myometrial Cells Stimulate Self-Renewal of Endometrial Mesenchymal Stem-Like Cells Through WNT5A/β-Catenin Signaling[J]. Stem Cells, 2019, 37(11):1455-1466. doi: 10.1002/stem.3070.
doi: 10.1002/stem.3070 pmid: 31414525 |
[20] |
Garcia-Alonso L, Handfield LF, Roberts K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro[J]. Nat Genet, 2021, 53(12):1698-1711. doi: 10.1038/ s41588-021-00972-2.
doi: 10.1038/s41588-021-00972-2 pmid: 34857954 |
[21] |
Akhmetshina A, Palumbo K, Dees C, et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis[J]. Nat Commun, 2012, 3:735. doi: 10.1038/ncomms1734.
doi: 10.1038/ncomms1734 pmid: 22415826 |
[22] |
赵世云, 袁立薇, 曹佳, 等. TGF-β1联合Wnt3a促进子宫内膜纤维化的机制研究[J]. 现代妇产科进展, 2021, 30(4):247-250, 254. doi: 10.13283/j.cnki.xdfckjz.2021.04.001.
doi: 10.13283/j.cnki.xdfckjz.2021.04.001 |
[23] |
Liu L, Chen G, Chen T, et al. si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the Wnt/β-catenin signalling pathway[J]. Stem Cell Res Ther, 2020, 11(1):479. doi: 10.1186/s13287-020-01990-3.
doi: 10.1186/s13287-020-01990-3 pmid: 33176855 |
[24] |
Wang L, Liu D, Wei J, et al. MiR-543 Inhibits the Migration and Epithelial-To-Mesenchymal Transition of TGF-β-Treated Endometrial Stromal Cells via the MAPK and Wnt/β-Catenin Signaling Pathways[J]. Pathol Oncol Res, 2021, 27:1609761. doi: 10.3389/pore.2021.1609761.
doi: 10.3389/pore.2021.1609761 URL |
[25] |
Reid S, Scholey JW. Recent Approaches to Targeting Canonical NFκB Signaling in the Early Inflammatory Response to Renal IRI[J]. J Am Soc Nephrol, 2021, 32(9):2117-2124. doi: 10.1681/ASN.2021010069.
doi: 10.1681/ASN.2021010069 URL |
[26] |
Zhang J, Cao L, Wang X, et al. The E3 ubiquitin ligase TRIM31 plays a critical role in hypertensive nephropathy by promoting proteasomal degradation of MAP3K7 in the TGF-β1 signaling pathway[J]. Cell Death Differ, 2022, 29(3):556-567. doi: 10.1038/s41418-021-00874-0.
doi: 10.1038/s41418-021-00874-0 URL |
[27] |
Conlon TM, John-Schuster G, Heide D, et al. Inhibition of LTβR signalling activates WNT-induced regeneration in lung[J]. Nature, 2020, 588(7836):151-156. doi: 10.1038/s41586-020-2882-8.
doi: 10.1038/s41586-020-2882-8 URL |
[28] |
Hua Q, Zhang Y, Li H, et al. Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium[J]. Stem Cell Res Ther, 2022, 13(1):301. doi: 10.1186/s13287-022-02990-1.
doi: 10.1186/s13287-022-02990-1 pmid: 35841027 |
[29] |
Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine[J]. Nat Rev Drug Discov, 2020, 19(7):480-494. doi: 10.1038/s41573-020-0070-z.
doi: 10.1038/s41573-020-0070-z pmid: 32555376 |
[30] |
Mooring M, Fowl BH, Lum S, et al. Hepatocyte Stress Increases Expression of Yes-Associated Protein and Transcriptional Coactivator With PDZ-Binding Motif in Hepatocytes to Promote Parenchymal Inflammation and Fibrosis[J]. Hepatology, 2020, 71(5):1813-1830. doi: 10.1002/hep.30928.
doi: 10.1002/hep.30928 pmid: 31505040 |
[31] |
Garoffolo G, Casaburo M, Amadeo F, et al. Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation[J]. Circ Res, 2022, 131(3):239-257. doi: 10.1161/CIRCRESAHA.121.319373.
doi: 10.1161/CIRCRESAHA.121.319373 URL |
[32] |
Pefani DE, Pankova D, Abraham AG, et al. TGF-β Targets the Hippo Pathway Scaffold RASSF1A to Facilitate YAP/SMAD2 Nuclear Translocation[J]. Mol Cell, 2016, 63(1):156-166. doi: 10.1016/j.molcel.2016.05.012.
doi: 10.1016/j.molcel.2016.05.012 URL |
[33] |
Zhang S, Li P, Yuan Z, et al. Platelet-rich plasma improves therapeutic effects of menstrual blood-derived stromal cells in rat model of intrauterine adhesion[J]. Stem Cell Res Ther, 2019, 10(1):61. doi: 10.1186/s13287-019-1155-7.
doi: 10.1186/s13287-019-1155-7 pmid: 30770774 |
[34] |
Zhao X, Chen J, Sun H, et al. New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction[J]. Cell Biosci, 2022, 12(1):117. doi: 10.1186/s13578-022-00856-w.
doi: 10.1186/s13578-022-00856-w pmid: 35897082 |
[35] |
Chen JX, Yi XJ, Gu PL, et al. The role of KDR in intrauterine adhesions may involve the TGF-β1/Smads signaling pathway[J]. Braz J Med Biol Res, 2019, 52(10):e8324. doi: 10.1590/1414-431X20198324.
doi: 10.1590/1414-431X20198324 URL |
[36] |
高红艳, 刘芳, 谢军, 等. TGF-β1及MMP-9在宫腔粘连内膜组织中的表达与意义[J]. 中国妇幼保健, 2014, 29(24):3971-3974. doi: 10.7620/zgfybj.j.issn.1001-4411.2014.24.40.
doi: 10.7620/zgfybj.j.issn.1001-4411.2014.24.40 |
[37] |
赵芳芳, 覃晓楣, 迟博, 等. PINK1/Parkin通路介导的线粒体自噬对宫腔粘连纤维化的影响及机制[J]. 现代妇产科进展, 2021, 30(8):575-579,584. doi: 10.13283/j.cnki.xdfckjz.2021.08.036.
doi: 10.13283/j.cnki.xdfckjz.2021.08.036 |
[38] |
李灿宇, 王婷婷, 刘欢欢, 等. SIS3抑制TGF-β1/Smad3信号通路对大鼠宫腔粘连的影响及其机制[J]. 中华妇产科杂志, 2019, 54(7):470-474. doi: 10.3760/cma.j.issn.0529-567x.2019.07.007.
doi: 10.3760/cma.j.issn.0529-567x.2019.07.007 |
[39] |
Fu M, Peng D, Lan T, et al. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases[J]. Acta Pharm Sin B, 2022, 12(4):1740-1760. doi: 10.1016/j.apsb.2022.01.007.
doi: 10.1016/j.apsb.2022.01.007 pmid: 35847511 |
[40] |
Mao L, Liu L, Zhang T, et al. MKL1 mediates TGF-β-induced CTGF transcription to promote renal fibrosis[J]. J Cell Physiol, 2020, 235(5):4790-4803. doi: 10.1002/jcp.29356.
doi: 10.1002/jcp.29356 pmid: 31637729 |
[41] |
宗实, 梁成波. VEGF基因修饰的MSC在预防宫腔粘连及促子宫内膜再生修复中评价[J]. 中国优生与遗传杂志, 2022, 30(1):20-24. doi: 10.13404/j.cnki.cjbhh.20220113.023.
doi: 10.13404/j.cnki.cjbhh.20220113.023 |
[1] | 曲慧颖, 桂文武. 多囊卵巢综合征女性体内的慢性低度炎症[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 48-52. |
[2] | 姚欣怡, 俞凌. 宫腔粘连治疗的新进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 431-436. |
[3] | 许阡, 彭燕蓁, 柳鑫, 陈曦. 子宫两处动静脉瘘合并胚物残留一例[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 206-210. |
[4] | 廖代娅, 李雪, 乔志莉, 廖祥余, 张科荣. 妊娠合并宫腔粘连“墙”一例[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 218-220. |
[5] | 胡荣, 谢雷, 张丽洪, 胡俊平. 肠道菌群与男性不育症的相关性[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 236-239. |
[6] | 申梦丹, 贺娟娟, 高明霞, 梁兰兰, 胡俊平. 生殖相关疾病与膳食炎症指数关系的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(5): 436-440. |
[7] | 李玉兰, 刘晓, 韩逢皎, 岳玲, 许飞雪. 高危型人乳头瘤病毒阴性宫颈癌的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(4): 342-346. |
[8] | 许阡, 辛乐, 柳鑫, 王金娟. 子宫穿孔导致输卵管嵌顿并宫内节育器异位一例[J]. 国际生殖健康/计划生育, 2022, 41(2): 121-124. |
[9] | 王玉楣, 何晓英. 流产手术后妊娠物残留疑似子宫动静脉瘘鉴别诊治分析[J]. 国际生殖健康/计划生育, 2022, 41(2): 125-128. |
[10] | 邱丹儿, 张琬琳, 王晓红. 宫腔粘连分离术后预防复发和改善生殖结局的辅助治疗措施[J]. 国际生殖健康/计划生育, 2022, 41(1): 46-51. |
[11] | 王立娜, 要丽君, 张慧英. 生殖道微生物群与子宫内膜息肉[J]. 国际生殖健康/计划生育, 2021, 40(6): 499-503. |
[12] | 曹婧, 苏芮, 王晓慧. 多囊卵巢综合征致子宫内膜病变相关影响因素研究进展[J]. 国际生殖健康/计划生育, 2021, 40(5): 415-419. |
[13] | 王奕翔, 武露明, 王一青, 张学红. 音猬因子信号通路在宫腔粘连纤维化中的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(3): 247-251. |
[14] | 刘彩钊, 王家雄, 樊彩斌, 杨慎敏. 与三种呼吸系统疾病关联的男性不育症[J]. 国际生殖健康/计划生育, 2021, 40(2): 126-130. |
[15] | 张佳莹, 凌莉. 妊娠期重度特发性血小板减少性紫癜[J]. 国际生殖健康/计划生育, 2021, 40(2): 163-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||