国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (5): 431-436.doi: 10.12280/gjszjk.20230224
收稿日期:
2023-05-30
出版日期:
2023-09-15
发布日期:
2023-09-13
通讯作者:
俞凌
E-mail:sharpfish1@163.com
基金资助:
Received:
2023-05-30
Published:
2023-09-15
Online:
2023-09-13
Contact:
YU Ling
E-mail:sharpfish1@163.com
摘要:
宫腔粘连(intrauterine adhesions,IUA)目前常用的治疗方法是宫腔镜下宫腔粘连分离术,但术后复发率高,术后子宫内膜损伤的风险也较高。药物治疗包括口服雌激素、他莫昔芬、阿司匹林、皮下注射促性腺激素释放激素激动剂及宫腔注入低剂量人绒毛膜促性腺激素等,疗效不稳定、治疗周期长。近年来,细胞治疗和再生医学的发展为IUA的治疗提供了新的研究方向。据报道,宫腔灌注或静脉输注干细胞悬液、宫腔内灌注富血小板血浆和生长因子及相关生物材料有较好的治疗效果。以细胞治疗为基础的多种新型辅助治疗措施逐渐应用于IUA治疗,成为理想的预防再粘连的方法;配合凝胶、支架等生物材料,为难治性IUA提供了新的治疗思路。
姚欣怡, 俞凌. 宫腔粘连治疗的新进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 431-436.
YAO Xin-yi, YU Ling. Advances of Therapy for Intrauterine Adhesions[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 431-436.
[1] |
Hooker AB, de Leeuw RA, Twisk J, et al. Reproductive performance of women with and without intrauterine adhesions following recurrent dilatation and curettage for miscarriage: long-term follow-up of a randomized controlled trial[J]. Hum Reprod, 2021, 36(1):70-81. doi: 10.1093/humrep/deaa289.
doi: 10.1093/humrep/deaa289 |
[2] |
March CM. Management of Asherman′s syndrome[J]. Reprod Biomed Online, 2011, 23(1):63-76. doi: 10.1016/j.rbmo.2010.11.018.
doi: 10.1016/j.rbmo.2010.11.018 |
[3] |
Sun Y, Chen X, Qian Z, et al. Estradiol and intrauterine device treatment for moderate and severe intrauterine adhesions after transcervical resection[J]. BMC Womens Health, 2022, 22(1):357. doi: 10.1186/s12905-022-01940-6.
doi: 10.1186/s12905-022-01940-6 pmid: 36038909 |
[4] | 俞凌, 王淑芳, 叶明侠, 等. 薄型子宫内膜治疗新进展[J]. 国际生殖健康/计划生育杂志, 2016, 35(2):165-169. |
[5] |
Pourakbari R, Ahmadi H, Yousefi M, et al. Cell therapy in female infertility-related diseases: Emphasis on recurrent miscarriage and repeated implantation failure[J]. Life Sci, 2020, 258:118181. doi: 10.1016/j.lfs.2020.118181.
doi: 10.1016/j.lfs.2020.118181 URL |
[6] |
Cao M, Pan Y, Zhang Q, et al. Predictive value of live birth rate based on different intrauterine adhesion evaluation systems following TCRA[J]. Reprod Biol Endocrinol, 2021, 19(1):13. doi: 10.1186/s12958-021-00697-1.
doi: 10.1186/s12958-021-00697-1 |
[7] |
He M, Chen Q, He J, et al. Reproductive outcomes of women with moderate to severe intrauterine adhesions after transcervical resection of adhesion: A systematic review and meta-analysis[J]. Medicine(Baltimore), 2023, 102(11):e33258. doi: 10.1097/MD.0000000000033258.
doi: 10.1097/MD.0000000000033258 |
[8] |
Zhuang LL, Wang K, Shen HL, et al. A comparison of special intrauterine balloons and intrauterine contraceptive devices in the treatment of intrauterine adhesions[J]. Arch Gynecol Obstet, 2023, 307(6):1873-1882. doi: 10.1007/s00404-023-06993-y.
doi: 10.1007/s00404-023-06993-y |
[9] |
Zhang X, Liu W, Zhou Y, et al. Comparison of therapeutic efficacy of three methods to prevent re-adhesion after hysteroscopic intrauterine adhesion separation: a parallel, randomized and single-center trial[J]. Ann Palliat Med, 2021, 10(6):6804-6823. doi: 10.21037/apm-21-1296.
doi: 10.21037/apm-21-1296 pmid: 34237979 |
[10] |
Wang Y, Yao Z, Zhao H, et al. Reproductive Outcomes of In Vitro Fertilization-Intracytoplasmic Sperm Injection after Transcervical Resection of Adhesions: A Retrospective Cohort Study[J]. J Minim Invasive Gynecol, 2021, 28(7):1367-1374. doi: 10.1016/j.jmig.2020.10.029.
doi: 10.1016/j.jmig.2020.10.029 URL |
[11] |
Ma J, Zhan H, Li W, et al. Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion[J]. Biomater Res, 2021, 25(1):40. doi: 10.1186/s40824-021-00242-6.
doi: 10.1186/s40824-021-00242-6 pmid: 34819167 |
[12] |
Gharibeh N, Aghebati-Maleki L, Madani J, et al. Cell-based therapy in thin endometrium and Asherman syndrome[J]. Stem Cell Res Ther, 2022, 13(1):33. doi: 10.1186/s13287-021-02698-8.
doi: 10.1186/s13287-021-02698-8 pmid: 35090547 |
[13] |
Sullivan S, Stacey GN, Akazawa C, et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines[J]. Regen Med, 2018, 13(7):859-866. doi: 10.2217/rme-2018-0095.
doi: 10.2217/rme-2018-0095 pmid: 30205750 |
[14] |
Chaudhary JK, Saini D, Chaudhary PK, et al. Exploring the Immunomodulatory Aspect of Mesenchymal Stem Cells for Treatment of Severe Coronavirus Disease 19[J]. Cells, 2022, 11(14):2175. doi: 10.3390/cells11142175.
doi: 10.3390/cells11142175 |
[15] |
Nikshad A, Aghlmandi A, Safaralizadeh R, et al. Advances of microfluidic technology in reproductive biology[J]. Life Sci, 2021, 265:118767. doi: 10.1016/j.lfs.2020.118767.
doi: 10.1016/j.lfs.2020.118767 URL |
[16] |
Zhao J, Zhang Q, Wang Y, et al. Uterine infusion with bone marrow mesenchymal stem cells improves endometrium thickness in a rat model of thin endometrium[J]. Reprod Sci, 2015, 22(2):181-188. doi: 10.1177/1933719114537715.
doi: 10.1177/1933719114537715 pmid: 24947483 |
[17] |
Shao X, Ai G, Wang L, et al. Adipose-derived stem cells transplantation improves endometrial injury repair[J]. Zygote, 2019, 27(6):367-374. doi: 10.1017/S096719941900042X.
doi: 10.1017/S096719941900042X pmid: 31452481 |
[18] |
Gan L, Duan H, Xu Q, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions[J]. Cytotherapy, 2017, 19(5):603-616. doi: 10.1016/j.jcyt.2017.02.003.
doi: S1465-3249(17)30061-0 pmid: 28285950 |
[19] |
Mao Y, Yang Y, Sun C, et al. Human amniotic mesenchymal stem cells promote endometrium regeneration in a rat model of intrauterine adhesion[J]. Cell Biol Int, 2023, 47(1):75-85. doi: 10.1002/cbin.11951.
doi: 10.1002/cbin.11951 URL |
[20] |
Gonçalves N, Frantz N, de Oliveira RM. Platelet-rich plasma (PRP) therapy: An approach in reproductive medicine based on successful animal models[J]. Anim Reprod, 2020, 16(1):93-98. doi: 10.21451/1984-3143-AR2018-093.
doi: 10.21451/1984-3143-AR2018-093 pmid: 33299482 |
[21] |
Farmani AR, Nekoofar MH, Ebrahimi-Barough S, et al. Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles[J]. J Polym Environ, 2023, 31(3):870-885. doi: 10.1007/s10924-022-02615-x.
doi: 10.1007/s10924-022-02615-x |
[22] |
Meftahpour V, Malekghasemi S, Baghbanzadeh A, et al. Platelet lysate: a promising candidate in regenerative medicine[J]. Regen Med, 2021, 16(1):71-85. doi: 10.2217/rme-2020-0065.
doi: 10.2217/rme-2020-0065 pmid: 33543999 |
[23] |
Kim MK, Yoon JA, Yoon SY, et al. Human Platelet-Rich Plasma Facilitates Angiogenesis to Restore Impaired Uterine Environments with Asherman′s Syndrome for Embryo Implantation and Following Pregnancy in Mice[J]. Cells, 2022, 11(9):1549. doi: 10.3390/cells11091549.
doi: 10.3390/cells11091549 URL |
[24] |
Kshersagar J, Pulgam L, Damle MN, et al. Transplantation of Human Placenta Derived Mitochondria Promotes Cell Communication in Endometrium in a Murine Model of Disturbed Endometrium[J]. Stem Cell Rev Rep, 2023, 19(5):1384-1401. doi: 10.1007/s12015-023-10516-2.
doi: 10.1007/s12015-023-10516-2 pmid: 36856954 |
[25] |
Kuroda K, Matsumoto A, Horikawa T, et al. Transcriptomic profiling analysis of human endometrial stromal cells treated with autologous platelet-rich plasma[J]. Reprod Med Biol, 2023, 22(1):e12498. doi: 10.1002/rmb2.12498.
doi: 10.1002/rmb2.12498 URL |
[26] |
Eftekhar M, Neghab N, Naghshineh E, et al. Can autologous platelet rich plasma expand endometrial thickness and improve pregnancy rate during frozen-thawed embryo transfer cycle? A randomized clinical trial[J]. Taiwan J Obstet Gynecol, 2018, 57(6):810-813. doi: 10.1016/j.tjog.2018.10.007.
doi: S1028-4559(18)30231-6 pmid: 30545532 |
[27] |
Cheng YH, Tsai NC, Chen YJ, et al. Extracorporeal Shock Wave Therapy Combined with Platelet-Rich Plasma during Preventive and Therapeutic Stages of Intrauterine Adhesion in a Rat Model[J]. Biomedicines, 2022, 10(2):476. doi: 10.3390/biomedicines10020476.
doi: 10.3390/biomedicines10020476 URL |
[28] |
Ding J, Wang J, Cai X, et al. Granulocyte colony-stimulating factor in reproductive-related disease: Function, regulation and therapeutic effect[J]. Biomed Pharmacother, 2022, 150:112903. doi: 10.1016/j.biopha.2022.112903.
doi: 10.1016/j.biopha.2022.112903 URL |
[29] |
Gleicher N, Vidali A, Barad DH. Successful treatment of unresponsive thin endometrium[J]. Fertil Steril, 2011, 95(6):2123.e13-e17. doi:10.1016/j.fertnstert.2011.01.143.
doi: 10.1016/j.fertnstert.2011.01.143 |
[30] |
Işık G, Oktem M, Guler I, et al. The impact of granulocyte colony-stimulating factor (G-CSF) on thin endometrium of an animal model with rats[J]. Gynecol Endocrinol, 2021, 37(5):438-445. doi:10.1080/09513590.2020.1786508.
doi: 10.1080/09513590.2020.1786508 URL |
[31] |
Fu LL, Xu Y, Yan J, et al. Efficacy of granulocyte colony-stimulating factor for infertility undergoing IVF: a systematic review and meta-analysis[J]. Reprod Biol Endocrinol, 2023, 21(1):34. doi: 10.1186/s12958-023-01063-z.
doi: 10.1186/s12958-023-01063-z |
[32] |
Lei L, Lv Q, Jin Y, et al. Angiogenic Microspheres for the Treatment of a Thin Endometrium[J]. ACS Biomater Sci Eng, 2021, 7(10):4914-4920. doi: 10.1021/acsbiomaterials.1c00615.
doi: 10.1021/acsbiomaterials.1c00615 pmid: 34415138 |
[33] |
Kim K, Bou-Ghannam S, Okano T. Cell sheet tissue engineering for scaffold-free three-dimensional (3D) tissue reconstruction[J]. Methods Cell Biol, 2020, 157:143-167. doi: 10.1016/bs.mcb.2019.11.020.
doi: 10.1016/bs.mcb.2019.11.020 |
[34] |
Huang J, Zhang W, Yu J, et al. Human amniotic mesenchymal stem cells combined with PPCNg facilitate injured endometrial regeneration[J]. Stem Cell Res Ther, 2022, 13(1):17. doi: 10.1186/s13287-021-02682-2.
doi: 10.1186/s13287-021-02682-2 pmid: 35022063 |
[35] |
Zhang H, Zhang Q, Zhang J, et al. Urinary bladder matrix scaffolds improve endometrial regeneration in a rat model of intrauterine adhesions[J]. Biomater Sci, 2020, 8(3):988-996. doi: 10.1039/c9bm00651f.
doi: 10.1039/c9bm00651f URL |
[36] |
Zhao P, Li X, Fang Q, et al. Surface modification of small intestine submucosa in tissue engineering[J]. Regen Biomater, 2020, 7(4):339-348. doi: 10.1093/rb/rbaa014.
doi: 10.1093/rb/rbaa014 pmid: 32793379 |
[37] |
Xin L, Lin X, Zhou F, et al. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation[J]. Acta Biomater, 2020, 113:252-266. doi: 10.1016/j.actbio.2020.06.029.
doi: S1742-7061(20)30359-7 pmid: 32574858 |
[1] | 吴宇轩, 孟子凡, 董丽, 季慧. 宫腔镜子宫内膜息肉手术后冻融胚胎移植时机对妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 274-278. |
[2] | 任缘, 孟昱时. 薄型子宫内膜的病理生理特征和治疗的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 58-62. |
[3] | 向春蓉, 邓志敏, 代芳芳, 程艳香. 间充质干细胞及其外泌体治疗早发性卵巢功能不全的临床研究及其进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 492-497. |
[4] | 刘洪江, 姜小花, 魏兆莲. 间充质干细胞及其联合生物材料支架在宫腔粘连治疗中的应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 424-430. |
[5] | 柳絮, 杨爱军, 李泽武, 石城, 刘利君, 孔潇丽, 王靖雯. 富血小板血浆改善卵巢储备功能的相关机制[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 329-333. |
[6] | 熊书云, 孙可丰, 李钰珂, 许莹鸿, 刘明浩. 干细胞治疗薄型子宫内膜的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 334-338. |
[7] | 张雨婷, 朱媛, 周建军. 子宫纵隔不孕症患者行宫腔镜子宫纵隔切除术后IVF/ICSI结局分析[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 18-22. |
[8] | 李光璨, 翟超, 张晓轩, 任春娥. 转化生长因子β1在宫腔粘连中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 83-88. |
[9] | 许阡, 成九梅. 成年女性阴道异物滞留10年一例[J]. 国际生殖健康/计划生育, 2022, 41(6): 472-475. |
[10] | 沈艳清, 陈煌, 陈烨. 干细胞治疗子宫内膜损伤的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(4): 322-326. |
[11] | 许阡, 辛乐, 柳鑫, 王金娟. 子宫穿孔导致输卵管嵌顿并宫内节育器异位一例[J]. 国际生殖健康/计划生育, 2022, 41(2): 121-124. |
[12] | 邱丹儿, 张琬琳, 王晓红. 宫腔粘连分离术后预防复发和改善生殖结局的辅助治疗措施[J]. 国际生殖健康/计划生育, 2022, 41(1): 46-51. |
[13] | 郑秀丹, 尹兰兰, 王艳波, 马天仲. 富血小板血浆治疗薄型子宫内膜的作用机制[J]. 国际生殖健康/计划生育, 2021, 40(6): 490-494. |
[14] | 陈超, 张颖. 宫腔镜在子宫腺肌病诊断中的价值[J]. 国际生殖健康/计划生育, 2021, 40(5): 411-414. |
[15] | 张月鑫, 刘菡文, 施陈楠, 宁松, 周静, 李楚玉, 杨晓玉, 覃莲菊, 刘嘉茵, 胡艳秋, 崔毓桂. 人羊膜间充质干细胞改善高龄小鼠睾丸功能的实验研究[J]. 国际生殖健康/计划生育, 2021, 40(4): 265-271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||