[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660
URL
|
[2] |
Hull R, Mbele M, Makhafola T, et al. Cervical cancer in low and middle-income countries[J]. Oncol Lett, 2020, 20(3):2058-2074. doi: 10.3892/ol.2020.11754.
doi: 10.3892/ol.2020.11754
URL
|
[3] |
Arbyn M, Simon M, Peeters E, et al. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening[J]. Clin Microbiol Infect, 2021, 27(8):1083-1095. doi: 10.1016/j.cmi.2021.04.031.
doi: 10.1016/j.cmi.2021.04.031
URL
|
[4] |
Kaliff M, Karlsson MG, Sorbe B, et al. HPV-negative Tumors in a Swedish Cohort of Cervical Cancer[J]. Int J Gynecol Pathol, 2020, 39(3):279-288. doi: 10.1097/PGP.0000000000000612.
doi: 10.1097/PGP.0000000000000612
pmid: 31206367
|
[5] |
Chessa C, Bodet C, Jousselin C, et al. Antiviral and Immunomodulatory Properties of Antimicrobial Peptides Produced by Human Keratinocytes[J]. Front Microbiol, 2020, 11:1155. doi: 10.3389/fmicb.2020.01155.
doi: 10.3389/fmicb.2020.01155
URL
|
[6] |
Zhou C, Tuong ZK, Frazer IH. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System[J]. Front Oncol, 2019, 9:682. doi: 10.3389/fonc.2019.00682.
doi: 10.3389/fonc.2019.00682
URL
|
[7] |
Yuan Y, Cai X, Shen F, et al. HPV post-infection microenvironment and cervical cancer[J]. Cancer Lett, 2021, 497:243-254. doi: 10.1016/j.canlet.2020.10.034.
doi: 10.1016/j.canlet.2020.10.034
pmid: 33122098
|
[8] |
Weber R, Fleming V, Hu X, et al. Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors[J]. Front Immunol, 2018, 9:1310. doi: 10.3389/fimmu.2018.01310.
doi: 10.3389/fimmu.2018.01310
URL
|
[9] |
Kim JY, Lee DW, Kim MJ, et al. Secondhand smoke exposure, diabetes, and high BMI are risk factors for uterine cervical cancer: a cross-sectional study from the Korea national health and nutrition examination survey(2010-2018)[J]. BMC Cancer, 2021, 21(1):880. doi: 10.1186/s12885-021-08580-3.
doi: 10.1186/s12885-021-08580-3
URL
|
[10] |
Baik S, Mehta FF, Chung SH. Medroxyprogesterone Acetate Prevention of Cervical Cancer through Progesterone Receptor in a Human Papillomavirus Transgenic Mouse Model[J]. Am J Pathol, 2019, 189(12):2459-2468. doi: 10.1016/j.ajpath.2019.08.013.
doi: 10.1016/j.ajpath.2019.08.013
URL
|
[11] |
Yoshida H, Shiraishi K, Kato T. Molecular Pathology of Human Papilloma Virus-Negative Cervical Cancers[J]. Cancers(Basel), 2021, 13(24):6351. doi: 10.3390/cancers13246351.
doi: 10.3390/cancers13246351
|
[12] |
Tjalma W. HPV negative cervical cancers and primary HPV screening[J]. Facts Views Vis Obgyn, 2018, 10(2):107-113.
pmid: 31110650
|
[13] |
Nicolás I, Marimon L, Barnadas E, et al. HPV-negative tumors of the uterine cervix[J]. Mod Pathol, 2019, 32(8):1189-1196. doi: 10.1038/s41379-019-0249-1.
doi: 10.1038/s41379-019-0249-1
URL
|
[14] |
Arezzo F, Cormio G, Loizzi V, et al. HPV-Negative Cervical Cancer: A Narrative Review[J]. Diagnostics(Basel), 2021, 11(6):952. doi: 10.3390/diagnostics11060952.
doi: 10.3390/diagnostics11060952
|
[15] |
Stolnicu S, Barsan I, Hoang L, et al. International Endocervical Adenocarcinoma Criteria and Classification (IECC): A New Pathogenetic Classification for Invasive Adenocarcinomas of the Endocervix[J]. Am J Surg Pathol, 2018, 42(2):214-226. doi: 10.1097/PAS.0000000000000986.
doi: 10.1097/PAS.0000000000000986
pmid: 29135516
|
[16] |
Xing B, Guo J, Sheng Y, et al. Human Papillomavirus-Negative Cervical Cancer: A Comprehensive Review[J]. Front Oncol, 2020, 10:606335. doi: 10.3389/fonc.2020.606335.
doi: 10.3389/fonc.2020.606335
URL
|
[17] |
Qi T, Qu Q, Li G, et al. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer[J]. Am J Cancer Res, 2020, 10(10):3083-3105.
|
[18] |
Park KJ. Cervical adenocarcinoma: integration of HPV status, pattern of invasion, morphology and molecular markers into classification[J]. Histopathology, 2020, 76(1):112-127. doi: 10.1111/his.13995.
doi: 10.1111/his.13995
pmid: 31846527
|
[19] |
Jenkins D, Molijn A, Kazem S, et al. Molecular and pathological basis of HPV-negative cervical adenocarcinoma seen in a global study[J]. Int J Cancer, 2020, 147(9):2526-2536. doi: 10.1002/ijc.33124.
doi: 10.1002/ijc.33124
URL
|
[20] |
Pirog EC, Park KJ, Kiyokawa T, et al. Gastric-type Adenocarcinoma of the Cervix: Tumor With Wide Range of Histologic Appearances[J]. Adv Anat Pathol, 2019, 26(1):1-12. doi: 10.1097/PAP.0000000000000216.
doi: 10.1097/PAP.0000000000000216
URL
|
[21] |
Zheng Z, Gao Y. Down-regulation of lncRNA snaR is correlated with postoperative distant recurrence of HPV-negative cervical squamous cell carcinoma[J]. Biosci Rep, 2018, 38(6):BSR20181213. doi: 10.1042/BSR20181213.
doi: 10.1042/BSR20181213
URL
|
[22] |
Ju W, Luo X, Zhang N. LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-β pathway[J]. Biosci Rep, 2019, 39(4):BSR20180878. doi: 10.1042/BSR20180878.
doi: 10.1042/BSR20180878
|
[23] |
Liu Y, Li M, Yu H, et al. LncRNA SRA1 is down-regulated in HPV-negative cervical squamous cell carcinoma and regulates cancer cell behaviors[J]. Biosci Rep, 2019, 39(8):BSR20191226. doi: 10.1042/BSR20191226.
doi: 10.1042/BSR20191226
|
[24] |
Yan SP, Chu DX, Qiu HF, et al. LncRNA LINC01305 silencing inhibits cell epithelial-mesenchymal transition in cervical cancer by inhibiting TNXB-mediated PI3K/Akt signalling pathway[J]. J Cell Mol Med, 2019, 23(4):2656-2666. doi: 10.1111/jcmm.14161.
doi: 10.1111/jcmm.14161
URL
|
[25] |
Huang X, Liu X, Du B, et al. LncRNA LINC01305 promotes cervical cancer progression through KHSRP and exosome-mediated transfer[J]. Aging(Albany NY), 2021, 13(15):19230-19242. doi: 10.18632/aging.202565.
doi: 10.18632/aging.202565
|
[26] |
Xu Y, Zou R, Wang J, et al. The role of the cancer testis antigen PRAME in tumorigenesis and immunotherapy in human cancer[J]. Cell Prolif, 2020, 53(3):e12770. doi: 10.1111/cpr.12770.
doi: 10.1111/cpr.12770
|
[27] |
Liu Y, Xu Y, Jiang W, et al. Discovery of key genes as novel biomarkers specifically associated with HPV-negative cervical cancer[J]. Mol Ther Methods Clin Dev, 2021, 21:492-506. doi: 10.1016/j.omtm.2021.03.026.
doi: 10.1016/j.omtm.2021.03.026
URL
|
[28] |
Wang C, Zhang T, Wang K, et al. ER-α36 Promotes the Malignant Progression of Cervical Cancer Mediated by Estrogen via HMGA2[J]. Front Oncol, 2021, 11:712849. doi: 10.3389/fonc.2021.712849.
doi: 10.3389/fonc.2021.712849
URL
|
[29] |
Wang WY, Cao YX, Zhou X, et al. HMGA2 gene silencing reduces epithelial-mesenchymal transition and lymph node metastasis in cervical cancer through inhibiting the ATR/Chk1 signaling pathway[J]. Am J Transl Res, 2018, 10(10):3036-3052.
|
[30] |
Xu Y, Chen X, Pan S, et al. TM7SF2 regulates cell proliferation and apoptosis by activation of C-Raf/ERK pathway in cervical cancer[J]. Cell Death Discov, 2021, 7(1):299. doi: 10.1038/s41420-021-00689-5.
doi: 10.1038/s41420-021-00689-5
|
[31] |
Cui N, Li L, Feng Q, et al. Hexokinase2 Promotes Cell Growth and Tumor Formation Through the Raf/MEK/ERK Signaling Pathway in Cervical Cancer[J]. Front Oncol, 2020, 10:581208. doi: 10.3389/fonc.2020.581208.
doi: 10.3389/fonc.2020.581208
URL
|
[32] |
Xiong Y, Li T, Assani G, et al. Ribociclib, a selective cyclin D kinase 4/6 inhibitor, inhibits proliferation and induces apoptosis of human cervical cancer in vitro and in vivo[J]. Biomed Pharmacother, 2019, 112:108602. doi: 10.1016/j.biopha.2019.108602.
doi: 10.1016/j.biopha.2019.108602
|
[33] |
Liu Y, Zhao R, Fang S, et al. Abemaciclib sensitizes HPV-negative cervical cancer to chemotherapy via specifically suppressing CDK4/6-Rb-E2F and mTOR pathways[J]. Fundam Clin Pharmacol, 2021, 35(1):156-164. doi: 10.1111/fcp.12574.
doi: 10.1111/fcp.12574
URL
|
[34] |
Fujiwara Y, Tamura K, Kondo S, et al. Phase1 study of abemaciclib, an inhibitor of CDK 4 and 6, as a single agent for Japanese patients with advanced cancer[J]. Cancer Chemother Pharmacol, 2016, 78(2):281-288. doi: 10.1007/s00280-016-3085-8.
doi: 10.1007/s00280-016-3085-8
URL
|