国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (2): 135-139.doi: 10.12280/gjszjk.20220553
收稿日期:
2022-11-25
出版日期:
2023-03-15
发布日期:
2023-03-21
通讯作者:
全松
E-mail:quansong@smu.edu.cn
基金资助:
HUO Wen-jie, WANG Xiao-cong, PENG Fei, QUAN Song()
Received:
2022-11-25
Published:
2023-03-15
Online:
2023-03-21
Contact:
QUAN Song
E-mail:quansong@smu.edu.cn
摘要:
挑选移植胚胎对提高体外受精-胚胎移植周期成功率至关重要。当前最常用的挑选胚胎方法是胚胎形态学评估,其高度依赖于实验室技术人员的主观视觉印象和个人经验,影响胚胎优选的准确性和一致性。近年有学者尝试将深度学习算法引入移植胚胎的选择,基于大量人工标记的胚胎图像/视频建立质量评估和结局预测模型,发现深度学习模型具备客观、准确、高效及稳定等优点。综述深度学习模型优选胚胎研究现状,并与人工胚胎形态学评估和经典机器学习算法的性能进行比较,进一步探讨其在辅助生殖中的应用价值。
霍文杰, 王晓聪, 彭飞, 全松. 深度学习在体外受精胚胎优选中的应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 135-139.
HUO Wen-jie, WANG Xiao-cong, PENG Fei, QUAN Song. Application of Deep Learning in Optimal Embryo Selection of In Vitro Fertilization[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 135-139.
[1] |
Gardner DK, Lane M, Stevens J, et al. Reprint of: Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer[J]. Fertil Steril, 2019, 112(4 Suppl 1):e81-e84. doi: 10.1016/j.fertnstert.2019.08.077.
doi: 10.1016/j.fertnstert.2019.08.077 pmid: 31623746 |
[2] |
Baxter Bendus AE, Mayer JF, Shipley SK, et al. Interobserver and intraobserver variation in day 3 embryo grading[J]. Fertil Steril, 2006, 86(6):1608-1615. doi: 10.1016/j.fertnstert.2006.05.037.
doi: 10.1016/j.fertnstert.2006.05.037 pmid: 17074349 |
[3] |
Bormann CL, Kanakasabapathy MK, Thirumalaraju P, et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation[J]. Elife, 2020, 9:e55301. doi: 10.7554/eLife.55301.
doi: 10.7554/eLife.55301 URL |
[4] |
Lundin K, Park H. Time-lapse technology for embryo culture and selection[J]. Ups J Med Sci, 2020, 125(2):77-84. doi: 10.1080/03009734.2020.1728444.
doi: 10.1080/03009734.2020.1728444 URL |
[5] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444. doi: 10.1038/nature14539.
doi: 10.1038/nature14539 |
[6] |
Chan HP, Samala RK, Hadjiiski LM, et al. Deep Learning in Medical Image Analysis[J]. Adv Exp Med Biol, 2020, 1213:3-21. doi: 10.1007/978-3-030-33128-3_1.
doi: 10.1007/978-3-030-33128-3_1 |
[7] |
Khosravi P, Kazemi E, Zhan Q, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization[J]. NPJ Digit Med, 2019, 2:21. doi: 10.1038/s41746-019-0096-y.
doi: 10.1038/s41746-019-0096-y pmid: 31304368 |
[8] |
Liao Q, Zhang Q, Feng X, et al. Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring[J]. Commun Biol, 2021, 4(1):415. doi: 10.1038/s42003-021-01937-1.
doi: 10.1038/s42003-021-01937-1 pmid: 33772211 |
[9] |
Tran D, Cooke S, Illingworth PJ, et al. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer[J]. Hum Reprod, 2019, 34(6):1011-1018. doi: 10.1093/humrep/dez064.
doi: 10.1093/humrep/dez064 |
[10] |
Huang B, Zheng S, Ma B, et al. Using deep learning to predict the outcome of live birth from more than 10,000 embryo data[J]. BMC Pregnancy Childbirth, 2022, 22(1):36. doi: 10.1186/s12884-021-04373-5.
doi: 10.1186/s12884-021-04373-5 |
[11] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639):115-118. doi: 10.1038/nature21056.
doi: 10.1038/nature21056 |
[12] |
Louis CM, Erwin A, Handayani N, et al. Review of computer vision application in in vitro fertilization: the application of deep learning-based computer vision technology in the world of IVF[J]. J Assist Reprod Genet, 2021, 38(7):1627-1639. doi: 10.1007/s10815-021-02123-2.
doi: 10.1007/s10815-021-02123-2 |
[13] |
Wang D, Lu Z, Xu Y, et al. Cellular structure image classification with small targeted training samples[J]. IEEE Access, 2019, 7:148967-148974. doi: 10.1109/access.2019.2940161.
doi: 10.1109/access.2019.2940161 URL |
[14] |
Rad RM, Saeedi P, Au J, et al. Trophectoderm segmentation in human embryo images via inceptioned U-Net[J]. Med Image Anal, 2020, 62:101612. doi: 10.1016/j.media.2019.101612.
doi: 10.1016/j.media.2019.101612 URL |
[15] |
Hu J, Wang H, Wang J, et al. SA-Net: A scale-attention network for medical image segmentation[J]. PLoS One, 2021, 16(4):e0247388. doi: 10.1371/journal.pone.0247388.
doi: 10.1371/journal.pone.0247388 URL |
[16] |
Kragh MF, Rimestad J, Berntsen J, et al. Automatic grading of human blastocysts from time-lapse imaging[J]. Comput Biol Med, 2019, 115:103494. doi: 10.1016/j.compbiomed.2019.103494.
doi: 10.1016/j.compbiomed.2019.103494 URL |
[17] |
Loewke K, Cho JH, Brumar CD, et al. Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos[J]. Fertil Steril, 2022, 117(3):528-535. doi: 10.1016/j.fertnstert.2021.11.022.
doi: 10.1016/j.fertnstert.2021.11.022 pmid: 34998577 |
[18] |
VerMilyea M, Hall J, Diakiw SM, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF[J]. Hum Reprod, 2020, 35(4):770-784. doi: 10.1093/humrep/deaa013.
doi: 10.1093/humrep/deaa013 URL |
[19] |
Pribenszky C, Nilselid AM, Montag M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis[J]. Reprod Biomed Online, 2017, 35(5):511-520. doi: 10.1016/j.rbmo.2017.06.022.
doi: S1472-6483(17)30307-3 pmid: 28736152 |
[20] |
Thompson SM, Onwubalili N, Brown K, et al. Blastocyst expansion score and trophectoderm morphology strongly predict successful clinical pregnancy and live birth following elective single embryo blastocyst transfer (eSET): a national study[J]. J Assist Reprod Genet, 2013, 30(12):1577-1581. doi: 10.1007/s10815-013-0100-4.
doi: 10.1007/s10815-013-0100-4 URL |
[21] |
Raudonis V, Paulauskaite-Taraseviciene A, Sutiene K, et al. Towards the automation of early-stage human embryo development detection[J]. Biomed Eng Online, 2019, 18(1):120. doi: 10.1186/s12938-019-0738-y.
doi: 10.1186/s12938-019-0738-y pmid: 31830988 |
[22] |
Dirvanauskas D, Maskeliunas R, Raudonis V, et al. Embryo development stage prediction algorithm for automated time lapse incubators[J]. Comput Methods Programs Biomed, 2019, 177:161-174. doi: 10.1016/j.cmpb.2019.05.027.
doi: 10.1016/j.cmpb.2019.05.027 URL |
[23] |
Leahy BD, Jang WD, Yang HY, et al. Automated Measurements of Key Morphological Features of Human Embryos for IVF[J]. Med Image Comput Comput Assist Interv, 2020, 12265:25-35. doi: 10.1007/978-3-030-59722-1_3.
doi: 10.1007/978-3-030-59722-1_3 pmid: 33313603 |
[24] |
Huang T, Kosasa T, Walker B, et al. Deep learning neural network analysis of human blastocyst expansion from time-lapse image files[J]. Reprod Biomed Online, 2021, 42(6):1075-1085. doi: 10.1016/j.rbmo.2021.02.015.
doi: 10.1016/j.rbmo.2021.02.015 pmid: 33820741 |
[25] |
Berntsen J, Rimestad J, Lassen JT, et al. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences[J]. PLoS One, 2022, 17(2):e0262661. doi: 10.1371/journal.pone.0262661.
doi: 10.1371/journal.pone.0262661 URL |
[26] |
Chavez-Badiola A, Mendizabal-Ruiz G, Flores-Saiffe Farias A, et al. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer[J]. Hum Reprod, 2020, 35(2):482. doi: 10.1093/humrep/dez263.
doi: 10.1093/humrep/dez263 URL |
[27] |
Miyagi Y, Habara T, Hirata R, et al. Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age[J]. Reprod Med Biol, 2019, 18(2):190-203. doi: 10.1002/rmb2.12266.
doi: 10.1002/rmb2.12266 pmid: 30996683 |
[28] |
Sawada Y, Sato T, Nagaya M, et al. Evaluation of artificial intelligence using time-lapse images of IVF embryos to predict live birth[J]. Reprod Biomed Online, 2021, 43(5):843-852. doi: 10.1016/j.rbmo.2021.05.002.
doi: 10.1016/j.rbmo.2021.05.002 pmid: 34521598 |
[29] |
Miyagi Y, Habara T, Hirata R, et al. Feasibility of predicting live birth by combining conventional embryo evaluation with artificial intelligence applied to a blastocyst image in patients classified by age[J]. Reprod Med Biol, 2019, 18(4):344-356. doi: 10.1002/rmb2.12284.
doi: 10.1002/rmb2.12284 pmid: 31607794 |
[30] |
Thirumalaraju P, Kanakasabapathy MK, Bormann CL, et al. Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality[J]. Heliyon, 2021, 7(2):e06298. doi: 10.1016/j.heliyon.2021.e06298.
doi: 10.1016/j.heliyon.2021.e06298 URL |
[31] |
Fitz VW, Kanakasabapathy MK, Thirumalaraju P, et al. Should there be an "AI" in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm[J]. J Assist Reprod Genet, 2021, 38(10):2663-2670. doi: 10.1007/s10815-021-02318-7.
doi: 10.1007/s10815-021-02318-7 |
[32] |
Ueno S, Berntsen J, Ito M, et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study[J]. Fertil Steril, 2021, 116(4):1172-1180. doi: 10.1016/j.fertnstert.2021.06.001.
doi: 10.1016/j.fertnstert.2021.06.001 pmid: 34246469 |
[33] |
Zheng W, Zhang S, Gu Y, et al. Non-invasive Metabolomic Profiling of Embryo Culture Medium Using Raman Spectroscopy With Deep Learning Model Predicts the Blastocyst Development Potential of Embryos[J]. Front Physiol, 2021, 12:777259. doi: 10.3389/fphys.2021.777259.
doi: 10.3389/fphys.2021.777259 URL |
[1] | 王嘉怡, 季慧, 李欣, 凌秀凤. 拮抗剂方案双扳机次日血清β-hCG水平对新鲜胚胎移植结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 447-452. |
[2] | 王钥, 唐岑, 李亚锦, 胡万芹. 未分化结缔组织病患者发生不良妊娠结局的影响因素及列线图预测模型的构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 453-457. |
[3] | 肖楠, 李永程, 姚义鸣, 孙红文, 姚汝强, 陈泳君, 殷宇辰, 罗海宁. 卵巢微环境内邻苯二甲酸酯暴露与炎性因子水平的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 353-360. |
[4] | 罗莎莎, 王德婧. 冻融胚胎移植妊娠结局相关影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 420-424. |
[5] | 谢娱新, 王瑞雪, 陈梦娜, 储继军. 膜联蛋白A家族在母胎界面及不良妊娠中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 430-434. |
[6] | 吴春蕾, 赵晓丽, 邱韵桓, 王宝娟, 董融, 李凯茜, 夏天. 结合基因芯片与单细胞转录组鉴定反复种植失败患者子宫内膜的细胞间通讯[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 265-273. |
[7] | 吴宇轩, 孟子凡, 董丽, 季慧. 宫腔镜子宫内膜息肉手术后冻融胚胎移植时机对妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 274-278. |
[8] | 李苗苗, 江洪, 蔡朋达. 胚胎停育的影响因素分析及预测研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 332-337. |
[9] | 李宁, 张安妮, 何晓霞, 张学红. 冻融胚胎移植后妊娠期高血压疾病发生的列线图预测模型构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 177-184. |
[10] | 张爱玉, 栾翠玉, 王冬梅, 蒋帅. IVF-ET不孕症患者就医延迟现状及影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 190-194. |
[11] | 谷旭照, 沈豪飞, 高敏, 刘阿慧, 王娜, 杨雯景, 张学红. 双子宫合并卵巢妊娠一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 118-120. |
[12] | 郝佳丽, 何玉洁. 不孕不育人群生育生活质量评价及其影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 159-165. |
[13] | 梁俊霞, 杨堉杰, 张丽, 葛丽娜, 王娜娜, 田瑛, 刘鹏, 闫蒙. 高龄女性IVF/ICSI无可利用胚胎危险因素探讨[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 1-6. |
[14] | 王洁, 马翔. 尿酸与女性生殖系统疾病及妊娠结局的相关性[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 63-67. |
[15] | 李彩华, 郭培培, 姜小花, 方有燕, 周平, 魏兆莲. 卵泡期高孕激素状态下促排卵方案的应用进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 68-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||