[1] |
Wu R, Van der Hoek KH, Ryan NK, et al. Macrophage contributions to ovarian function[J]. Hum Reprod Update, 2004, 10(2):119-133. doi: 10.1093/humupd/dmh011.
doi: 10.1093/humupd/dmh011
pmid: 15073142
|
[2] |
Zhang Z, Schlamp F, Huang L, et al. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary[J]. Reproduction, 2020, 159(3):325-337. doi: 10.1530/REP-19-0330.
doi: 10.1530/REP-19-0330
pmid: 31940276
|
[3] |
Turner EC, Hughes J, Wilson H, et al. Conditional ablation of macrophages disrupts ovarian vasculature[J]. Reproduction, 2011, 141(6):821-831. doi: 10.1530/REP-10-0327.
doi: 10.1530/REP-10-0327
pmid: 21393340
|
[4] |
Jokela H, Lokka E, Kiviranta M, et al. Fetal-derived macrophages persist and sequentially maturate in ovaries after birth in mice[J]. Eur J Immunol, 2020, 50(10):1500-1514. doi: 10.1002/eji.202048531.
doi: 10.1002/eji.202048531
URL
|
[5] |
Li N, Li Z, Fang F, et al. Two distinct resident macrophage populations coexist in the ovary[J]. Front Immunol, 2022, 13:1007711. doi: 10.3389/fimmu.2022.1007711.
doi: 10.3389/fimmu.2022.1007711
URL
|
[6] |
李念娱, 焦雪, 秦莹莹. 性腺组织驻留巨噬细胞的研究进展[J]. 中华生殖与避孕杂志, 2022, 42(4):419-424. doi: 10.3760/cma.j.cn101441-20200901-00472.
doi: 10.3760/cma.j.cn101441-20200901-00472
|
[7] |
Sun JX, Xu XH, Jin L. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds[J]. Front Immunol, 2022, 13:880286. doi: 10.3389/fimmu.2022.880286.
doi: 10.3389/fimmu.2022.880286
URL
|
[8] |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9):6425-6440. doi: 10.1002/jcp.26429.
doi: 10.1002/jcp.26429
pmid: 29319160
|
[9] |
Duffy DM, Ko C, Jo M, et al. Ovulation: Parallels With Inflammatory Processes[J]. Endocr Rev, 2019, 40(2):369-416. doi: 10.1210/er.2018-00075.
doi: 10.1210/er.2018-00075
pmid: 30496379
|
[10] |
Caillaud M, Duchamp G, Gérard N. In vivo effect of interleukin-1beta and interleukin-1RA on oocyte cytoplasmic maturation, ovulation, and early embryonic development in the mare[J]. Reprod Biol Endocrinol, 2005, 3:26. doi: 10.1186/1477-7827-3-26.
doi: 10.1186/1477-7827-3-26
|
[11] |
Zhu Y. Metalloproteases in gonad formation and ovulation[J]. Gen Comp Endocrinol, 2021, 314:113924. doi: 10.1016/j.ygcen.2021.113924.
doi: 10.1016/j.ygcen.2021.113924
URL
|
[12] |
赵久华, 郑舒婷, 林凤屏, 等. 免疫细胞在黄体发育及退化过程中的作用[J]. 中国医学科学院学报, 2022, 44(3):504-509. doi: 10.3881/j.issn.1000-503X.13309.
doi: 10.3881/j.issn.1000-503X.13309
|
[13] |
Wu J, Carlock C, Zhou C, et al. IL-33 is required for disposal of unnecessary cells during ovarian atresia through regulation of autophagy and macrophage migration[J]. J Immunol, 2015, 194(5):2140-2147. doi: 10.4049/jimmunol.1402503.
doi: 10.4049/jimmunol.1402503
pmid: 25617473
|
[14] |
Cui LL, Yang G, Pan J, et al. Tumor necrosis factor α knockout increases fertility of mice[J]. Theriogenology, 2011, 75(5):867-876. doi: 10.1016/j.theriogenology.2010.10.029.
doi: 10.1016/j.theriogenology.2010.10.029
URL
|
[15] |
Pepe G, Locati M, Della Torre S, et al. The estrogen-macrophage interplay in the homeostasis of the female reproductive tract[J]. Hum Reprod Update, 2018, 24(6):652-672. doi: 10.1093/humupd/dmy026.
doi: 10.1093/humupd/dmy026
pmid: 30256960
|
[16] |
Liang Y, Xie H, Wu J, et al. Villainous role of estrogen in macrophage-nerve interaction in endometriosis[J]. Reprod Biol Endocrinol, 2018, 16(1):122. doi: 10.1186/s12958-018-0441-z.
doi: 10.1186/s12958-018-0441-z
|
[17] |
Ono Y, Nagai M, Yoshino O, et al. CD11c+ M1-like macrophages (MΦs) but not CD206+ M2-like MΦ are involved in folliculogenesis in mice ovary[J]. Sci Rep, 2018, 8(1):8171. doi: 10.1038/s41598-018-25837-3.
doi: 10.1038/s41598-018-25837-3
pmid: 29802255
|
[18] |
McFee RM, Rozell TG, Cupp AS. The balance of proangiogenic and antiangiogenic VEGFA isoforms regulate follicle development[J]. Cell Tissue Res, 2012, 349(3):635-647. doi: 10.1007/s00441-012-1330-y.
doi: 10.1007/s00441-012-1330-y
pmid: 22322423
|
[19] |
Rizov M, Andreeva P, Dimova I. Molecular regulation and role of angiogenesis in reproduction[J]. Taiwan J Obstet Gynecol, 2017, 56(2):127-132. doi: 10.1016/j.tjog.2016.06.019.
doi: S1028-4559(17)30001-3
pmid: 28420494
|
[20] |
Zeng XY, Xie H, Yuan J, et al. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression[J]. Cancer Biol Ther, 2019, 20(7):956-966. doi: 10.1080/15384047.2018.1564567.
doi: 10.1080/15384047.2018.1564567
URL
|
[21] |
Tan Z, Gong X, Li Y, et al. Impacts of endometrioma on ovarian aging from basic science to clinical management[J]. Front Endocrinol(Lausanne), 2022, 13:1073261. doi: 10.3389/fendo.2022.1073261.
doi: 10.3389/fendo.2022.1073261
|
[22] |
Taylor HS, Kotlyar AM, Flores VA. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations[J]. Lancet, 2021, 397(10276):839-852. doi: 10.1016/S0140-6736(21)00389-5.
doi: 10.1016/S0140-6736(21)00389-5
pmid: 33640070
|
[23] |
Laganà AS, Salmeri FM, Ban Frangež H, et al. Evaluation of M1 and M2 macrophages in ovarian endometriomas from women affected by endometriosis at different stages of the disease[J]. Gynecol Endocrinol, 2020, 36(5):441-444. doi: 10.1080/09513590.2019.1683821.
doi: 10.1080/09513590.2019.1683821
pmid: 31663401
|
[24] |
Liu X, Zhang Q, Guo SW. Histological and Immunohistochemical Characterization of the Similarity and Difference Between Ovarian Endometriomas and Deep Infiltrating Endometriosis[J]. Reprod Sci, 2018, 25(3):329-340. doi: 10.1177/1933719117718275.
doi: 10.1177/1933719117718275
pmid: 28718381
|
[25] |
Filippi I, Carrarelli P, Luisi S, et al. Different Expression of Hypoxic and Angiogenic Factors in Human Endometriotic Lesions[J]. Reprod Sci, 2016, 23(4):492-497. doi: 10.1177/1933719115607978.
doi: 10.1177/1933719115607978
pmid: 26408396
|
[26] |
Zhang D, Yu Y, Duan T, et al. The role of macrophages in reproductive-related diseases[J]. Heliyon, 2022, 8(11):e11686. doi: 10.1016/j.heliyon.2022.e11686.
doi: 10.1016/j.heliyon.2022.e11686
URL
|
[27] |
Xiong YL, Liang XY, Yang X, et al. Low-grade chronic inflammation in the peripheral blood and ovaries of women with polycystic ovarian syndrome[J]. Eur J Obstet Gynecol Reprod Biol, 2011, 159(1):148-150. doi: 10.1016/j.ejogrb.2011.07.012.
doi: 10.1016/j.ejogrb.2011.07.012
URL
|
[28] |
Goteri G, Lucarini G, Zizzi A, et al. Proangiogenetic molecules, hypoxia-inducible factor-1alpha and nitric oxide synthase isoforms in ovarian endometriotic cysts[J]. Virchows Arch, 2010, 456(6):703-710. doi: 10.1007/s00428-010-0929-1.
doi: 10.1007/s00428-010-0929-1
URL
|
[29] |
Chon SJ, Umair Z, Yoon MS. Premature Ovarian Insufficiency: Past, Present, and Future[J]. Front Cell Dev Biol, 2021, 9:672890. doi: 10.3389/fcell.2021.672890.
doi: 10.3389/fcell.2021.672890
URL
|
[30] |
Ishizuka B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI)[J]. Front Endocrinol(Lausanne), 2021, 12:626924. doi: 10.3389/fendo.2021.626924.
doi: 10.3389/fendo.2021.626924
|
[31] |
Liu P, Zhang X, Hu J, et al. Dysregulated cytokine profile associated with biochemical premature ovarian insufficiency[J]. Am J Reprod Immunol, 2020, 84(4):e13292. doi: 10.1111/aji.13292.
doi: 10.1111/aji.13292
|
[32] |
Taghavi SA, Ashrafi M, Mehdizadeh M, et al. Toll-like receptors expression in follicular cells of patients with poor ovarian response[J]. Int J Fertil Steril, 2014, 8(2):183-192.
pmid: 25083184
|
[33] |
Briley SM, Jasti S, McCracken JM, et al. Reproductive age-associated fibrosis in the stroma of the mammalian ovary[J]. Reproduction, 2016, 152(3):245-260. doi: 10.1530/REP-16-0129.
doi: 10.1530/REP-16-0129
pmid: 27491879
|