国际生殖健康/计划生育杂志 ›› 2025, Vol. 44 ›› Issue (1): 30-35.doi: 10.12280/gjszjk.20240449

• 综述 • 上一篇    下一篇

辅助生殖技术中妊娠结局预测模型的研究进展

王聪, 宫政, 马赛花, 胡凯元, 郎梦然, 夏天()   

  1. 300381 天津中医药大学第一附属医院生殖医学科,国家中医针灸临床医学研究中心(王聪,宫政,马赛花,郎梦然,夏天); 天津大学医学院(胡凯元)
  • 收稿日期:2024-09-18 出版日期:2025-01-15 发布日期:2025-01-22
  • 通讯作者: 夏天,E-mail:xiatian76@163.com
  • 基金资助:
    国家自然科学基金(82274570);天津市卫生健康委员会中医中西医结合科研课题(2023126)

Research Progress on Clinical Prediction Models for Pregnancy Outcomes in Assisted Reproductive Technology

WANG Cong, GONG Zheng, MA Sai-hua, HU Kai-yuan, LANG Meng-ran, XIA Tian()   

  1. Department of Reproductive Medicine, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China (WANG Cong, GONG Zheng, MA Sai-hua, LANG Meng-ran, XIA Tian); Tianjin University School of Medicine, Tianjin 300072, China (HU Kai-yuan)
  • Received:2024-09-18 Published:2025-01-15 Online:2025-01-22
  • Contact: XIA Tian, E-mail: xiatian76@163.com

摘要:

辅助生殖技术(assisted reproductive technology,ART)妊娠结局受多种因素影响,而传统基于临床经验的评估方式存在主观性和不准确性,临床预测模型(clinical prediction model,CPM)通过综合分析多模态变量因子可提高评估的准确性和治疗安全性,有助于实现精准医疗。目前,基于多样化算法构建了多种预测妊娠结局的CPM,不仅包括传统的逻辑回归算法,还扩展到新型的非线性机器学习算法,如随机森林、神经网络和深度学习算法。最新临床研究进展表明,基于多样化算法构建的CPM在ART领域预测妊娠结局方面展现出较高的准确性和实际应用潜力。进一步研究可以通过收集更多样化和具有代表性的临床数据、优化模型算法、开展多中心合作、提升CPM的泛化能力,构建更准确可靠的CPM。

关键词: 生殖技术, 辅助, 妊娠结局, 逻辑回归, 机器学习, 临床预测模型

Abstract:

The pregnancy outcome of assisted reproductive technology (ART) is influenced by a variety of factors, so the traditional assessment method based on clinical experience may be subjective and inaccurate. Clinical prediction models (CPM) can improve the accuracy and safety of treatment by comprehensively analyzing multimodal variable factors, contributing to precision medicine. Currently, a variety of pregnancy outcome CPMs have been constructed based on diverse algorithms, including not only traditional Logistic regression but also novel nonlinear machine learning algorithms such as random forests, neural networks and deep learning algorithms. Recent advancements in clinical research indicated that the CPMs constructed using a variety of algorithms have the high accuracy and practical potential in predicting pregnancy outcomes of ART. In future, the more accurate and reliable CPMs will be developed by collecting more diverse and representative clinical data, optimizing the model algorithms, engaging in multi-center collaborations and enhancing the generalization capabilities of the CPMs.

Key words: Reproductive techniques, assisted, Pregnancy outcome, Logistic regression, Machine learning, Clinical prediction model