[1] |
Shacfe G, Turko R, Syed HH, et al. A DNA Methylation Perspective on Infertility[J]. Genes(Basel), 2023, 14(12):2132. doi: 10.3390/genes14122132.
|
[2] |
Zegers-Hochschild F, Crosby JA, Musri C, et al. ART in Latin America: the Latin American Registry, 2020[J]. JBRA Assist Reprod, 2023, 27(3):514-538. doi: 10.5935/1518-0557.20230025.
|
[3] |
Wong KY, Tan HH, Allen JC, et al. Outcomes and cost analysis of single-embryo transfer versus double-embryo transfer[J]. Womens Health(Lond), 2023,19:17455057231206312. doi: 10.1177/17455057231206312.
|
[4] |
Davoodi Nik B, Hashemi Karoii D, Favaedi R, et al. Differential expression of ion channel coding genes in the endometrium of women experiencing recurrent implantation failures[J]. Sci Rep, 2024, 14(1):19822. doi: 10.1038/s41598-024-70778-9.
pmid: 39192025
|
[5] |
Cimadomo D, Craciunas L, Vermeulen N, et al. Definition, diagnostic and therapeutic options in recurrent implantation failure: an international survey of clinicians and embryologists[J]. Hum Reprod, 2021, 36(2):305-317. doi: 10.1093/humrep/deaa317.
|
[6] |
Bala R, Singh V, Rajender S, et al. Environment, Lifestyle, and Female Infertility[J]. Reprod Sci, 2021, 28(3):617-638. doi: 10.1007/s43032-020-00279-3.
|
[7] |
Li YH, Li HR, Wang PH. Parameters to predict the pregnancy in assisted reproductive technology[J]. J Chin Med Assoc, 2019, 82(4):249-250. doi: 10.1097/JCMA.0000000000000060.
|
[8] |
Methorst C, Perrin J, Faix A, et al. Male infertility, environment and lifestyle[J]. Prog Urol, 2023, 33(13):613-623. doi: 10.1016/j.purol.2023.09.014.
pmid: 38012907
|
[9] |
van Smeden M, Reitsma JB, Riley RD, et al. Clinical prediction models: diagnosis versus prognosis[J]. J Clin Epidemiol, 2021, 132:142-145. doi: 10.1016/j.jclinepi.2021.01.009.
pmid: 33775387
|
[10] |
Strandberg R, Jepsen P, Hagström H. Developing and validating clinical prediction models in hepatology-An overview for clinicians[J]. J Hepatol, 2024, 81(1):149-162. doi: 10.1016/j.jhep.2024.03.030.
|
[11] |
刘志强, 熊风, 张宏展, 等. IVF-ET妊娠结局预测模型的研究进展[J]. 生殖医学杂志, 2021, 30(5):695-700. doi: 10.3969/j.issn.1004-3845.2021.05.025.
|
[12] |
Shingshetty L, Cameron NJ, Mclernon DJ, et al. Predictors of success after in vitro fertilization[J]. Fertil Steril, 2024, 121(5):742-751. doi: 10.1016/j.fertnstert.2024.03.003.
pmid: 38492930
|
[13] |
于医萍, 高一博, 方兰兰, 等. 机器学习在体外受精-胚胎移植技术中的应用[J]. 中华生殖与避孕杂志, 2021, 41(10):883-892. doi: 10.3760/cma.j.cn101441-20200428-00251.
|
[14] |
Jiang S, Li L, Li F, et al. Establishment of predictive model for analyzing clinical pregnancy outcome based on IVF-ET and ICSI assisted reproductive technology[J]. Saudi J Biol Sci, 2020, 27(4):1049-1056. doi: 10.1016/j.sjbs.2020.02.021.
pmid: 32256165
|
[15] |
Zhu S, Jiang W, Sun Y, et al. Nomogram to predict the probability of clinical pregnancy in women with poor ovarian response undergoing in vitro fertilization/ intracytoplasmic sperm injection cycles[J]. Arch Gynecol Obstet, 2024, 310(3):1697-1707. doi: 10.1007/s00404-024-07598-9.
|
[16] |
Balachandren N, Salman M, Diu NL, et al. Ovarian reserve as a predictor of cumulative live birth[J]. Eur J Obstet Gynecol Reprod Biol, 2020, 252:273-277. doi: 10.1016/j.ejogrb.2020.06.063.
pmid: 32645642
|
[17] |
Sun X, Yao F, Yin C, et al. Independent value of PMOI on hCG day in predicting pregnancy outcomes in IVF/ICSI cycles[J]. Front Endocrinol(Lausanne), 2023,14:1086998. doi: 10.3389/fendo.2023.1086998.
|
[18] |
Meng S, Shi C, Jia Y, et al. A combined clinical and specific genes′ model to predict live birth for in vitro fertilization and embryo transfer patients[J]. BMC Pregnancy Childbirth, 2023, 23(1):702. doi: 10.1186/s12884-023-05988-6.
|
[19] |
Chen L, Jiang R, Jiang Y, et al. A validated model for individualized prediction of pregnancy outcome in woman after fresh cycle of Day 5 single blastocyst transfer[J]. Sci Rep, 2023, 13(1):10016. doi: 10.1038/s41598-023-36824-8.
pmid: 37340007
|
[20] |
Raef B, Ferdousi R. A Review of Machine Learning Approaches in Assisted Reproductive Technologies[J]. Acta Inform Med, 2019, 27(3):205-211. doi: 10.5455/aim.2019.27.205-211.
|
[21] |
Li L, Cui X, Yang J, et al. Using feature optimization and LightGBM algorithm to predict the clinical pregnancy outcomes after in vitro fertilization[J]. Front Endocrinol(Lausanne), 2023, 14:1305473. doi: 10.3389/fendo.2023.1305473.
|
[22] |
Yang L, Peavey M, Kaskar K, et al. Development of a dynamic machine learning algorithm to predict clinical pregnancy and live birth rate with embryo morphokinetics[J]. F S Rep, 2022, 3(2):116-123. doi: 10.1016/j.xfre.2022.04.004.
|
[23] |
Chen F, Chen Y, Mai Q. Multi-Omics Analysis and Machine Learning Prediction Model for Pregnancy Outcomes After Intracytoplasmic Sperm Injection-in vitro Fertilization[J]. Front Public Health, 2022,10:924539. doi: 10.3389/fpubh.2022.924539.
|
[24] |
Hu J, Szymczak S. A review on longitudinal data analysis with random forest[J]. Brief Bioinform, 2023, 24(2):bbad002. doi: 10.1093/bib/bbad002.
|
[25] |
Liang R, An J, Zheng Y, et al. Predicting and improving the probability of live birth for women undergoing frozen-thawed embryo transfer: a data-driven estimation and simulation model[J]. Comput Methods Programs Biomed, 2021,198:105780. doi: 10.1016/j.cmpb.2020.105780.
|
[26] |
Wang CW, Kuo CY, Chen CH, et al. Predicting clinical pregnancy using clinical features and machine learning algorithms in in vitro fertilization[J]. PLoS One, 2022, 17(6):e0267554. doi: 10.1371/journal.pone.0267554.
|
[27] |
Yang H, Liu F, Ma Y, et al. Clinical pregnancy outcomes prediction in vitro fertilization women based on random forest prediction model: A nested case-control study[J]. Medicine(Baltimore), 2022, 101(49):e32232. doi: 10.1097/MD.0000000000032232.
|
[28] |
Yang R, Yu Y. Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis[J]. Front Oncol, 2021,11:638182. doi: 10.3389/fonc.2021.638182.
|
[29] |
Liu L, Liang H, Yang J, et al. Clinical data-based modeling of IVF live birth outcome and its application[J]. Reprod Biol Endocrinol, 2024, 22(1):76. doi: 10.1186/s12958-024-01253-3.
|
[30] |
Enatsu N, Miyatsuka I, An LM, et al. A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation[J]. Reprod Med Biol, 2022, 21(1):e12443. doi: 10.1002/rmb2.12443.
|
[31] |
Liu H, Zhang Z, Gu Y, et al. Development and evaluation of a live birth prediction model for evaluating human blastocysts from a retrospective study[J]. Elife, 2023,12:e83662. doi: 10.7554/eLife.83662.
|
[32] |
Thirunavukarasu R, C GPD, R G, et al. Towards computational solutions for precision medicine based big data healthcare system using deep learning models: A review[J]. Comput Biol Med, 2022, 149:106020. doi: 10.1016/j.compbiomed.2022.106020.
|
[33] |
Ueno S, Berntsen J, Ito M, et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study[J]. Fertil Steril, 2021, 116(4):1172-1180. doi: 10.1016/j.fertnstert.2021.06.001.
pmid: 34246469
|
[34] |
Mapstone C, Hunter H, Brison D, et al. Deep learning pipeline reveals key moments in human embryonic development predictive of live birth after in vitro fertilization[J]. Biol Methods Protoc, 2024, 9(1):bpae052. doi: 10.1093/biomethods/bpae052.
|
[35] |
Huang B, Zheng S, Ma B, et al. Using deep learning to predict the outcome of live birth from more than 10,000 embryo data[J]. BMC Pregnancy Childbirth, 2022, 22(1):36. doi: 10.1186/s12884-021-04373-5.
|
[36] |
Ratna MB, Bhattacharya S, Abdulrahim B, et al. A systematic review of the quality of clinical prediction models in in vitro fertilisation[J]. Hum Reprod, 2020, 35(1):100-116. doi: 10.1093/humrep/dez258.
|