国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (5): 409-413.doi: 10.12280/gjszjk.20230091
收稿日期:
2023-02-28
出版日期:
2023-09-15
发布日期:
2023-09-13
通讯作者:
陈骞
E-mail:cq_passion@163.com
基金资助:
SONG Qiu-jin, QIAN Xiao-hong, CHEN Qian()
Received:
2023-02-28
Published:
2023-09-15
Online:
2023-09-13
Contact:
CHEN Qian
E-mail:cq_passion@163.com
摘要:
肠道菌群在维持宿主正常生理功能中发挥重要作用。由于孕妇在循环、内分泌、免疫状态和饮食结构等方面的特殊性,其肠道菌群的组成和数量也会发生相应改变。研究发现,孕妇肠道菌群的组成与妊娠并发症的发生密切相关,如妊娠期糖尿病、子痫前期和早产等。孕妇肠道菌群失衡及其代谢产物可损害肠道屏障、加剧肠道局部和全身性的炎症反应,进而导致胰岛素抵抗、高血糖和高血压等症状,从而增加妊娠并发症的发生风险。此外,通过补充益生菌或益生元等方法调节肠道菌群,进而改善机体免疫和代谢状态的治疗策略已取得初步成果,为临床妊娠并发症的预防和辅助治疗提供了可行方法。
宋秋瑾, 钱晓红, 陈骞. 肠道菌群与妊娠并发症相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 409-413.
SONG Qiu-jin, QIAN Xiao-hong, CHEN Qian. Progress on the Relationship between Gut Microbiota and Pregnancy Complications[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 409-413.
[1] |
Qi X, Yun C, Pang Y, et al. The impact of the gut microbiota on the reproductive and metabolic endocrine system[J]. Gut Microbes, 2021, 13(1):1-21. doi: 10.1080/19490976.2021.1894070.
doi: 10.1080/19490976.2020.1832856 pmid: 33525983 |
[2] |
Jardon KM, Canfora EE, Goossens GH, et al. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health[J]. Gut, 2022, 71(6):1214-1226. doi: 10.1136/gutjnl-2020-323715.
doi: 10.1136/gutjnl-2020-323715 pmid: 35135841 |
[3] |
Martel J, Chang SH, Ko YF, et al. Gut barrier disruption and chronic disease[J]. Trends Endocrinol Metab, 2022, 33(4):247-265. doi: 10.1016/j.tem.2022.01.002.
doi: 10.1016/j.tem.2022.01.002 URL |
[4] |
Youssef M, Ahmed HY, Zongo A, et al. Probiotic Supplements: Their Strategies in the Therapeutic and Prophylactic of Human Life-Threatening Diseases[J]. Int J Mol Sci, 2021, 22(20):11290. doi: 10.3390/ijms222011290.
doi: 10.3390/ijms222011290 URL |
[5] |
Chadchan SB, Singh V, Kommagani R. Female reproductive dysfunctions and the gut microbiota[J]. J Mol Endocrinol, 2022, 69(3):R81-R94. doi: 10.1530/JME-21-0238.
doi: 10.1530/JME-21-0238 pmid: 35900833 |
[6] |
Gorczyca K, Obuchowska A, Kimber-Trojnar Ż, et al. Changes in the Gut Microbiome and Pathologies in Pregnancy[J]. Int J Environ Res Public Health, 2022, 19(16):9961. doi: 10.3390/ijerph19169961.
doi: 10.3390/ijerph19169961 URL |
[7] |
Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150(3):470-480. doi: 10.1016/j.cell.2012.07.008.
doi: 10.1016/j.cell.2012.07.008 pmid: 22863002 |
[8] |
Chen F, Gan Y, Li Y, et al. Association of gestational diabetes mellitus with changes in gut microbiota composition at the species level[J]. BMC Microbiol, 2021, 21(1):147. doi: 10.1186/s12866-021-02207-0.
doi: 10.1186/s12866-021-02207-0 pmid: 33990174 |
[9] |
Cunningham AL, Stephens JW, Harris DA. Intestinal microbiota and their metabolic contribution to type 2 diabetes and obesity[J]. J Diabetes Metab Disord, 2021, 20(2):1855-1870. doi: 10.1007/s40200-021-00858-4.
doi: 10.1007/s40200-021-00858-4 |
[10] |
Min Q, Wang Y, Jin T, et al. Analysis of Intestinal Short-Chain Fatty Acid Metabolism Profile After Probiotics and GLP-1 Treatment for Type 2 Diabetes Mellitus[J]. Front Endocrinol(Lausanne), 2022, 13:892127. doi: 10.3389/fendo.2022.892127.
doi: 10.3389/fendo.2022.892127 |
[11] |
Liang YY, Liu LY, Jia Y, et al. Correlation between gut microbiota and glucagon-like peptide-1 in patients with gestational diabetes mellitus[J]. World J Diabetes, 2022, 13(10):861-876. doi: 10.4239/wjd.v13.i10.861.
doi: 10.4239/wjd.v13.i10.861 URL |
[12] |
Wang S, Liu Y, Qin S, et al. Composition of Maternal Circulating Short-Chain Fatty Acids in Gestational Diabetes Mellitus and Their Associations with Placental Metabolism[J]. Nutrients, 2022, 14(18):3727. doi: 10.3390/nu14183727.
doi: 10.3390/nu14183727 URL |
[13] |
Peng K, Xia S, Xiao S, et al. Short-chain fatty acids affect the development of inflammatory bowel disease through intestinal barrier, immunology, and microbiota: A promising therapy?[J]. J Gastroenterol Hepatol, 2022, 37(9):1710-1718. doi: 10.1111/jgh.15970.
doi: 10.1111/jgh.15970 URL |
[14] |
Qin S, Wang Y, Wang S, et al. Gut microbiota in women with gestational diabetes mellitus has potential impact on metabolism in pregnant mice and their offspring[J]. Front Microbiol, 2022, 13:870422. doi: 10.3389/fmicb.2022.870422.
doi: 10.3389/fmicb.2022.870422 URL |
[15] |
Zhou Y, Xu H, Xu J, et al. F. prausnitzii and its supernatant increase SCFAs-producing bacteria to restore gut dysbiosis in TNBS-induced colitis[J]. AMB Express, 2021, 11(1):33. doi: 10.1186/s13568-021-01197-6.
doi: 10.1186/s13568-021-01197-6 |
[16] |
Huang L, Thonusin C, Chattipakorn N, et al. Impacts of gut microbiota on gestational diabetes mellitus: a comprehensive review[J]. Eur J Nutr, 2021, 60(5):2343-2360. doi: 10.1007/s00394-021-02483-6.
doi: 10.1007/s00394-021-02483-6 pmid: 33512587 |
[17] |
Pinto Y, Frishman S, Turjeman S, et al. Gestational diabetes is driven by microbiota-induced inflammation months before diagnosis[J]. Gut, 2023, 72(5):918-928. doi: 10.1136/gutjnl-2022-328406.
doi: 10.1136/gutjnl-2022-328406 pmid: 36627187 |
[18] |
Huang L, Cai M, Li L, et al. Gut microbiota changes in preeclampsia, abnormal placental growth and healthy pregnant women[J]. BMC Microbiol, 2021, 21(1):265. doi: 10.1186/s12866-021-02327-7.
doi: 10.1186/s12866-021-02327-7 pmid: 34607559 |
[19] |
Chen X, Li P, Liu M, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation[J]. Gut, 2020, 69(3):513-522. doi: 10.1136/gutjnl-2019-319101.
doi: 10.1136/gutjnl-2019-319101 pmid: 31900289 |
[20] |
Ahmadian E, Rahbar Saadat Y, Hosseiniyan Khatibi SM, et al. Pre-Eclampsia: Microbiota possibly playing a role[J]. Pharmacol Res, 2020, 155:104692. doi: 10.1016/j.phrs.2020.104692.
doi: 10.1016/j.phrs.2020.104692 URL |
[21] |
Wang J, Gu X, Yang J, et al. Gut Microbiota Dysbiosis and Increased Plasma LPS and TMAO Levels in Patients With Preeclampsia[J]. Front Cell Infect Microbiol, 2019, 9:409. doi: 10.3389/fcimb.2019.00409.
doi: 10.3389/fcimb.2019.00409 URL |
[22] |
Hu M, Eviston D, Hsu P, et al. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia[J]. Nat Commun, 2019, 10(1):3031. doi: 10.1038/s41467-019-10703-1.
doi: 10.1038/s41467-019-10703-1 pmid: 31292453 |
[23] |
Ogbu CP, Roy S, Vecchio AJ. Disruption of Claudin-Made Tight Junction Barriers by Clostridium perfringens Enterotoxin: Insights from Structural Biology[J]. Cells, 2022, 11(5):903. doi: 10.3390/cells11050903.
doi: 10.3390/cells11050903 URL |
[24] |
Li J, Wang L, Chen H, et al. The Diagnostic Potential of Gut Microbiota-Derived Short-Chain Fatty Acids in Preeclampsia[J]. Front Pediatr, 2022, 10:878924. doi: 10.3389/fped.2022.878924.
doi: 10.3389/fped.2022.878924 URL |
[25] |
Wu Y, Wu Y, Duan L, et al. Clinical meaning of serum trimethylamine oxide, N-terminal-pro-brain natriuretic peptide, hypoxia-inducible factor-1a and left ventricular function and pregnancy outcome in patients with pregnancy-induced hypertension[J]. J Med Biochem, 2023, 42(2):265-273. doi: 10.5937/jomb0-37030.
doi: 10.5937/jomb0-37030 pmid: 36987419 |
[26] |
Gershuni V, Li Y, Elovitz M, et al. Maternal gut microbiota reflecting poor diet quality is associated with spontaneous preterm birth in a prospective cohort study[J]. Am J Clin Nutr, 2021, 113(3):602-611. doi: 10.1093/ajcn/nqaa361.
doi: 10.1093/ajcn/nqaa361 pmid: 33515003 |
[27] |
Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate[J]. Nature, 2011, 469(7331):543-547. doi: 10.1038/nature09646.
doi: 10.1038/nature09646 |
[28] |
Moylan H, Nguyen-Ngo C, Lim R, et al. The short-chain fatty acids butyrate and propionate protect against inflammation-induced activation of mediators involved in active labor: implications for preterm birth[J]. Mol Hum Reprod, 2020, 26(6):452-468. doi: 10.1093/molehr/gaaa025.
doi: 10.1093/molehr/gaaa025 pmid: 32236411 |
[29] |
Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015):337-341. doi: 10.1126/science.1198469.
doi: 10.1126/science.1198469 pmid: 21205640 |
[30] |
Martorell P, Alvarez B, Llopis S, et al. Heat-Treated Bifidobacterium longum CECT-7347: A Whole-Cell Postbiotic with Antioxidant, Anti-Inflammatory, and Gut-Barrier Protection Properties[J]. Antioxidants(Basel), 2021, 10(4):536. doi: 10.3390/antiox10040536.
doi: 10.3390/antiox10040536 |
[31] |
Niu MM, Guo HX, Cai JW, et al. Bifidobacterium breve Alleviates DSS-Induced Colitis in Mice by Maintaining the Mucosal and Epithelial Barriers and Modulating Gut Microbes[J]. Nutrients, 2022, 14(18):3671. doi: 10.3390/nu14183671.
doi: 10.3390/nu14183671 URL |
[32] |
Jin J, Gao L, Zou X, et al. Gut Dysbiosis Promotes Preeclampsia by Regulating Macrophages and Trophoblasts[J]. Circ Res, 2022, 131(6):492-506. doi: 10.1161/CIRCRESAHA.122.320771.
doi: 10.1161/CIRCRESAHA.122.320771 URL |
[33] |
Liu W, Zhang T, Wang J, et al. Protective Effect of Akkermansia muciniphila on the Preeclampsia-Like Mouse Model[J]. Reprod Sci,2023 Mar 15. doi: 10.1007/s43032-023-01206-y.
doi: 10.1007/s43032-023-01206-y |
[34] |
Yefet E, Bar L, Izhaki I, et al. Effects of Probiotics on Glycemic Control and Metabolic Parameters in Gestational Diabetes Mellitus: Systematic Review and Meta-Analysis[J]. Nutrients, 2023, 15(7):1633. doi: 10.3390/nu15071633.
doi: 10.3390/nu15071633 URL |
[35] |
Pakmehr A, Ejtahed HS, Shirzad N, et al. Preventive effect of probiotics supplementation on occurrence of gestational diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials[J]. Front Med(Lausanne), 2022, 9:1031915. doi: 10.3389/fmed.2022.1031915.
doi: 10.3389/fmed.2022.1031915 |
[36] |
Li P, Wang H, Guo L, et al. Association between gut microbiota and preeclampsia-eclampsia: a two-sample Mendelian randomization study[J]. BMC Med, 2022, 20(1):443. doi: 10.1186/s12916-022-02657-x.
doi: 10.1186/s12916-022-02657-x pmid: 36380372 |
[37] |
Liu Y, Wang C, Li J, et al. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition[J]. FASEB J, 2020, 34(1):1065-1078. doi: 10.1096/fj.201901943RR.
doi: 10.1096/fj.201901943RR pmid: 31914668 |
[38] |
Luo S, He L, Zhang H, et al. Arabinoxylan from rice bran protects mice against high-fat diet-induced obesity and metabolic inflammation by modulating gut microbiota and short-chain fatty acids[J]. Food Funct, 2022, 13(14):7707-7719. doi: 10.1039/d2fo00569g.
doi: 10.1039/d2fo00569g URL |
[39] |
Mu J, Guo X, Zhou Y, et al. The Effects of Probiotics/Synbiotics on Glucose and Lipid Metabolism in Women with Gestational Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials[J]. Nutrients, 2023, 15(6):1375. doi: 10.3390/nu15061375.
doi: 10.3390/nu15061375 URL |
[1] | 王嘉怡, 季慧, 李欣, 凌秀凤. 拮抗剂方案双扳机次日血清β-hCG水平对新鲜胚胎移植结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 447-452. |
[2] | 王钥, 唐岑, 李亚锦, 胡万芹. 未分化结缔组织病患者发生不良妊娠结局的影响因素及列线图预测模型的构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 453-457. |
[3] | 高晓丽, 苏婧, 李增彦, 李洁. 14例妊娠相关溶血尿毒症综合征临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 458-461. |
[4] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[5] | 吴颖颖, 杜欣. 妊娠中期单孔腹腔镜剔除多发子宫肌瘤术后足月妊娠一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 406-409. |
[6] | 罗莎莎, 王德婧. 冻融胚胎移植妊娠结局相关影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 420-424. |
[7] | 谢娱新, 王瑞雪, 陈梦娜, 储继军. 膜联蛋白A家族在母胎界面及不良妊娠中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 430-434. |
[8] | 吴宇轩, 孟子凡, 董丽, 季慧. 宫腔镜子宫内膜息肉手术后冻融胚胎移植时机对妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 274-278. |
[9] | 徐晓燕, 王笑璇. 卵巢妊娠破裂三例诊疗体会[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 309-312. |
[10] | 柳芳蕾, 冯晓玲. 甲状腺相关激素与子痫前期的相关性[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 348-352. |
[11] | 李宁, 张安妮, 何晓霞, 张学红. 冻融胚胎移植后妊娠期高血压疾病发生的列线图预测模型构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 177-184. |
[12] | 王冬雪, 包莉莉, 刘珊, 杨波. 改良灵活拮抗剂方案对卵巢功能正常女性COH结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 185-189. |
[13] | 夏梦瑶, 杨玲, 赵飞, 郭璐璐, 王凤卿. 早期腹腔妊娠破裂一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 204-206. |
[14] | 石百超, 常惠, 王宇, 卢凤娟, 王凯悦, 关木馨, 马良, 吴效科. 肠道菌群在多囊卵巢综合征中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 238-242. |
[15] | 王芳, 万桃, 杨永秀. 2型糖尿病相关子宫内膜癌与肠道菌群相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 249-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||