国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (1): 68-73.doi: 10.12280/gjszjk.20210432
收稿日期:
2021-09-15
出版日期:
2022-01-15
发布日期:
2022-02-17
通讯作者:
邓晓惠
E-mail:dxh0122@163.com
ZANG Zhao-wen, DAI Cai-feng, GAO Jing-yue, DENG Xiao-hui()
Received:
2021-09-15
Published:
2022-01-15
Online:
2022-02-17
Contact:
DENG Xiao-hui
E-mail:dxh0122@163.com
摘要:
胚胎反复种植失败(RIF)是体外受精-胚胎移植(IVF-ET)临床妊娠率的重要限制因素,而子宫内膜免疫相关因素对RIF发生有重要影响。子宫内膜中存在多种免疫细胞,包括自然杀伤细胞(NK细胞)、巨噬细胞(Mφ)、树突状细胞(DC)和T细胞等,在调节子宫内膜容受性和胚胎植入中发挥重要作用。内膜中免疫相关的细胞因子,包括白细胞介素6(IL-6)、IL-10、IL-15、 IL-17、肿瘤坏死因子α(TNF-α)、γ干扰素(IFN-γ)和核因子κB(NF-κB)等,对胚胎黏附、滋养细胞侵入、血管重构和免疫耐受的影响也参与决定胚胎植入和发育。子宫内膜免疫失衡在RIF发生中发挥重要作用,但目前对于RIF患者是否应使用免疫治疗尚无高级别循证医学证据。
臧朝雯, 代彩凤, 高景悦, 邓晓惠. 胚胎反复种植失败的子宫内膜免疫因素及其研究进展[J]. 国际生殖健康/计划生育, 2022, 41(1): 68-73.
ZANG Zhao-wen, DAI Cai-feng, GAO Jing-yue, DENG Xiao-hui. Research Progress on Endometrial Immune Factors of Recurrent Implantation Failure[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 68-73.
[1] |
Coughlan C, Ledger W, Wang Q, et al. Recurrent implantation failure: definition and management[J]. Reprod Biomed Online, 2014, 28(1):14-38. doi: 10.1016/j.rbmo.2013.08.011.
doi: 10.1016/j.rbmo.2013.08.011 pmid: 24269084 |
[2] |
Polanski LT, Baumgarten MN, Quenby S, et al. What exactly do we mean by ′recurrent implantation failure′? A systematic review and opinion[J]. Reprod Biomed Online, 2014, 28(4):409-423. doi: 10.1016/j.rbmo.2013.12.006.
doi: 10.1016/j.rbmo.2013.12.006 pmid: 24581986 |
[3] |
He A, Zou Y, Wan C, et al. The role of transcriptomic biomarkers of endometrial receptivity in personalized embryo transfer for patients with repeated implantation failure[J]. J Transl Med, 2021, 19(1):176. doi: 10.1186/s12967-021-02837-y.
doi: 10.1186/s12967-021-02837-y URL |
[4] |
Strunz B, Bister J, Jönsson H, et al. Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy[J]. Sci Immunol, 2021, 6(56):eabb7800. doi: 10.1126/sciimmunol.abb7800.
doi: 10.1126/sciimmunol.abb7800 |
[5] |
Babayeva G, Purut YE, Giray B, et al. Endometrial CD56+ natural killer cells in women with recurrent implantation failure: An immunohistochemical study[J]. Turk J Obstet Gynecol, 2020, 17(4):236-239. doi: 10.4274/tjod.galenos.2020.90359.
doi: 10.4274/tjod.galenos.2020.90359 |
[6] |
Woon EV, Day A, Bracewell-Milnes T, et al. Immunotherapy to improve pregnancy outcome in women with abnormal natural killer cell levels/activity and recurrent miscarriage or implantation failure: A systematic review and meta-analysis[J]. J Reprod Immunol, 2020, 142:103189. doi: 10.1016/j.jri.2020.103189.
doi: S0165-0378(20)30110-8 pmid: 32889304 |
[7] |
Zhang Y, Ma L, Hu X, et al. The role of the PD-1/PD-L1 axis in macrophage differentiation and function during pregnancy[J]. Hum Reprod, 2019, 34(1):25-36. doi: 10.1093/humrep/dey347.
doi: 10.1093/humrep/dey347 URL |
[8] |
Ding J, Yang C, Zhang Y, et al. M2 macrophage-derived G-CSF promotes trophoblasts EMT, invasion and migration via activating PI3K/Akt/Erk1/2 pathway to mediate normal pregnancy[J]. J Cell Mol Med, 2021, 25(4):2136-2147. doi: 10.1111/jcmm.16191.
doi: 10.1111/jcmm.16191 URL |
[9] |
Ding J, Zhang Y, Cai X, et al. Extracellular vesicles derived from M1 macrophages deliver miR-146a-5p and miR-146b-5p to suppress trophoblast migration and invasion by targeting TRAF6 in recurrent spontaneous abortion[J]. Theranostics, 2021, 11(12):5813-5830. doi: 10.7150/thno.58731.
doi: 10.7150/thno.58731 URL |
[10] |
Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy[J]. J Clin Invest, 2018, 128(10):4224-4235. doi: 10.1172/JCI122182.
doi: 10.1172/JCI122182 pmid: 30272581 |
[11] |
Liu S, Wei H, Li Y, et al. Characterization of dendritic cell (DC)-10 in recurrent miscarriage and recurrent implantation failure[J]. Reproduction, 2019, 158(3):247-255. doi: 10.1530/REP-19-0172.
doi: 10.1530/REP-19-0172 pmid: 31284267 |
[12] |
Liu S, Wei H, Li Y, et al. Downregulation of ILT4(+) dendritic cells in recurrent miscarriage and recurrent implantation failure[J]. Am J Reprod Immunol, 2018, 80(4):e12998. doi: 10.1111/aji.12998.
doi: 10.1111/aji.12998 URL |
[13] |
Chen P, Zhou L, Chen J, et al. The Immune Atlas of Human Deciduas With Unexplained Recurrent Pregnancy Loss[J]. Front Immunol, 2021, 12:689019. doi: 10.3389/fimmu.2021.689019.
doi: 10.3389/fimmu.2021.689019 URL |
[14] |
Murata H, Tanaka S, Okada H. Immune Tolerance of the Human Decidua[J]. J Clin Med, 2021, 10(2):351. doi: 10.3390/jcm10020351.
doi: 10.3390/jcm10020351 URL |
[15] |
郭玲, 代彩凤, 刘金, 等. Th1/Th2细胞平衡及NK细胞对胚胎种植的影响[J]. 现代妇产科进展, 2021, 30(3):177-180. doi: 10.13283/j.cnki.xdfckjz.2021.03.004.
doi: 10.13283/j.cnki.xdfckjz.2021.03.004 |
[16] |
Bretscher P. On Analyzing How the Th1/Th2 Phenotype of an Immune Response Is Determined: Classical Observations Must Not Be Ignored[J]. Front Immunol, 2019, 10:1234. doi: 10.3389/fimmu.2019.01234.
doi: 10.3389/fimmu.2019.01234 pmid: 31231378 |
[17] |
Ghasemnejad-Berenji H, Ghaffari Novin M, Hajshafiha M, et al. Immunomodulatory effects of hydroxychloroquine on Th1/Th2 balance in women with repeated implantation failure[J]. Biomed Pharmacother, 2018, 107:1277-1285. doi: 10.1016/j.biopha.2018. 08.027.
doi: S0753-3322(18)34115-5 pmid: 30257342 |
[18] |
Bahrami-Asl Z, Farzadi L, Fattahi A, et al. Tacrolimus Improves the Implantation Rate in Patients with Elevated Th1/2 Helper Cell Ratio and Repeated Implantation Failure(RIF)[J]. Geburtshilfe Frauenheilkd, 2020, 80(8):851-862. doi: 10.1055/a-1056-3148.
doi: 10.1055/a-1056-3148 URL |
[19] |
Kuroda K, Nakagawa K, Horikawa T, et al. Increasing number of implantation failures and pregnancy losses associated with elevated Th1/Th2 cell ratio[J]. Am J Reprod Immunol, 2021, 86(3):e13429. doi: 10.1111/aji.13429.
doi: 10.1111/aji.13429 |
[20] |
Chen X, Diao L, Lian R, et al. Potential impact of maternal vitamin D status on peripheral blood and endometrium cellular immunity in women with recurrent implantation failure[J]. Am J Reprod Immunol, 2020, 84(1):e13243. doi: 10.1111/aji.13243.
doi: 10.1111/aji.13243 |
[21] |
Palacz M, Tremellen K. High Body Mass Index is associated with an expansion of endometrial T Regulatory cell and macrophage populations[J]. J Reprod Immunol, 2018, 129:36-39. doi: 10.1016/j.jri.2018.08.004.
doi: 10.1016/j.jri.2018.08.004 URL |
[22] |
Ghanavatinejad A, Bozorgmehr M, Shokri MR, et al. MneSCs exert a supportive role in establishing a pregnancy-friendly microenvironment by inhibiting TH17 polarization[J]. J Reprod Immunol, 2021, 144(4):103252.doi: 10.1016/j.jri.2020.103252.
doi: 10.1016/j.jri.2020.103252 URL |
[23] |
Huang Q, Wu H, Li M, et al. Prednisone improves pregnancy outcome in repeated implantation failure by enhance regulatory T cells bias[J]. J Reprod Immunol, 2021, 143:103245. doi: 10.1016/j.jri.2020.103245.
doi: 10.1016/j.jri.2020.103245 URL |
[24] |
Sadeghpour S, Ghasemnejad Berenji M, Nazarian H, et al. Effects of treatment with hydroxychloroquine on the modulation of Th17/Treg ratio and pregnancy outcomes in women with recurrent implantation failure: clinical trial[J]. Immunopharmacol Immunotoxicol, 2020, 42(6):632-642. doi: 10.1080/08923973.2020.1835951.
doi: 10.1080/08923973.2020.1835951 URL |
[25] |
Amjadi F, Zandieh Z, Mehdizadeh M, et al. The uterine immunological changes may be responsible for repeated implantation failure[J]. J Reprod Immunol, 2020, 138:103080. doi: 10.1016/j.jri.2020.103080.
doi: 10.1016/j.jri.2020.103080 URL |
[26] |
Zhou M, Xu H, Zhang D, et al. Decreased PIBF1/IL6/p-STAT3 during the mid-secretory phase inhibits human endometrial stromal cell proliferation and decidualization[J]. J Adv Res, 2021, 30:15-25. doi: 10.1016/j.jare.2020.09.002.
doi: 10.1016/j.jare.2020.09.002 URL |
[27] |
Turienzo A, Lledó B, Ortiz JA, et al. Prevalence of candidate single nucleotide polymorphisms on p53, IL-11, IL-10, VEGF and APOE in patients with repeated implantation failure (RIF) and pregnancy loss (RPL)[J]. Hum Fertil(Camb), 2020, 23(2):117-122. doi: 10.1080/14647273.2018.1524935.
doi: 10.1080/14647273.2018.1524935 |
[28] |
Koushaeian L, Ghorbani F, Ahmadi M, et al. The role of IL-10-producing B cells in repeated implantation failure patients with cellular immune abnormalities[J]. Immunol Lett, 2019, 214:16-22. doi: 10.1016/j.imlet.2019.08.002.
doi: S0165-2478(19)30196-8 pmid: 31442543 |
[29] |
Zhang M, Wen B, Anton OM, et al. IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages[J]. Proc Natl Acad Sci U S A, 2018, 115(46):E10915-E10924. doi: 10.1073/pnas.1811615115.
doi: 10.1073/pnas.1811615115 URL |
[30] |
Crosby DA, Glover LE, Brennan EP, et al. Dysregulation of the interleukin-17A pathway in endometrial tissue from women with unexplained infertility affects pregnancy outcome following assisted reproductive treatment[J]. Hum Reprod, 2020, 35(8):1875-1888. doi: 10.1093/humrep/deaa111.
doi: 10.1093/humrep/deaa111 URL |
[31] |
Makrigiannakis A, Makrygiannakis F, Vrekoussis T. Approaches to Improve Endometrial Receptivity in Case of Repeated Implantation Failures[J]. Front Cell Dev Biol, 2021, 9:613277. doi: 10.3389/fcell. 2021.613277.
doi: 10.3389/fcell.2021.613277 pmid: 33796523 |
[32] |
Santiago KY, Porchia LM, López-Bayghen E. Endometrial preparation with etanercept increased embryo implantation and live birth rates in women suffering from recurrent implantation failure during IVF[J]. Reprod Biol, 2021, 21(1):100480. doi: 10.1016/j.repbio.2021.100480.
doi: 10.1016/j.repbio.2021.100480 pmid: 33476990 |
[33] |
Wang W, Sung N, Gilman-Sachs A, et al. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells[J]. Front Immunol, 2020, 11:2025. doi: 10.3389/fimmu.2020.02025.
doi: 10.3389/fimmu.2020.02025 URL |
[34] |
Kalem Z, Namli Kalem M, Bakirarar B, et al. Intrauterine G-CSF Administration in Recurrent Implantation Failure (RIF): An Rct[J]. Sci Rep, 2020, 10(1):5139. doi: 10.1038/s41598-020-61955-7.
doi: 10.1038/s41598-020-61955-7 pmid: 32198409 |
[35] |
Jiang Y, Zhao Q, Zhang Y, et al. Treatment of G-CSF in unexplained, repeated implantation failure: A systematic review and meta-analysis[J]. J Gynecol Obstet Hum Reprod, 2020 Jul 11:101866. doi: 10.1016/j.jogoh.2020.101866.
doi: 10.1016/j.jogoh.2020.101866 |
[36] |
Zhou M, Yi Y, Hong L. Oridonin Ameliorates Lipopolysaccharide-Induced Endometritis in Mice via Inhibition of the TLR-4/NF-κB pathway[J]. Inflammation, 2019, 42(1):81-90. doi: 10.1007/s10753-018-0874-8.
doi: 10.1007/s10753-018-0874-8 pmid: 30132202 |
[37] | Ersahin A, Acet M, Acet T, et al. Disturbed endometrial NF-κB expression in women with recurrent implantation failure[J]. Eur Rev Med Pharmacol Sci, 2016, 20(24):5037-5040. |
[38] |
Zhao W, Cui L, Huang X, et al. Activation of Rev-erbα attenuates lipopolysaccharide-induced inflammatory reactions in human endometrial stroma cells via suppressing TLR4-regulated NF-κB activation[J]. Acta Biochim Biophys Sin(Shanghai), 2019, 51(9):908-914. doi: 10.1093/abbs/gmz078.
doi: 10.1093/abbs/gmz078 |
[39] |
Xiang Z, Tu W. Dual Face of Vγ9Vδ2-T Cells in Tumor Immunology: Anti- versus Pro-Tumoral Activities[J]. Front Immunol, 2017, 8:1041. doi: 10.3389/fimmu.2017.01041.
doi: 10.3389/fimmu.2017.01041 URL |
[40] |
Fan DX, Zhou WJ, Jin LP, et al. Trophoblast-Derived CXCL16 Decreased Granzyme B Production of Decidual γδ T Cells and Promoted Bcl-xL Expression of Trophoblasts[J]. Reprod Sci, 2019, 26(4):532-542. doi: 10.1177/1933719118777638.
doi: 10.1177/1933719118777638 URL |
[41] |
Huang C, Zhang Y, Xiang Z, et al. Granzyme B-expressing γδ-T and NK cells as a predictor of clinical pregnancy failure in patients with unexplained repeated implantation failure[J]. J Reprod Immunol, 2021, 144:103269. doi: 10.1016/j.jri.2020.103269.
doi: 10.1016/j.jri.2020.103269 URL |
[1] | 王嘉怡, 季慧, 李欣, 凌秀凤. 拮抗剂方案双扳机次日血清β-hCG水平对新鲜胚胎移植结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 447-452. |
[2] | 苗贺瑱, 刘佳佳, 闫宇, 马国霞, 王晓慧. 一例罕见的宫颈子宫内膜异位症[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 475-478. |
[3] | 肖楠, 李永程, 姚义鸣, 孙红文, 姚汝强, 陈泳君, 殷宇辰, 罗海宁. 卵巢微环境内邻苯二甲酸酯暴露与炎性因子水平的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 353-360. |
[4] | 饶慧, 卢娇兰, 周欢, 李雄. 子宫内膜中肾样腺癌累及宫颈管间质一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 410-414. |
[5] | 罗莎莎, 王德婧. 冻融胚胎移植妊娠结局相关影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 420-424. |
[6] | 谢娱新, 王瑞雪, 陈梦娜, 储继军. 膜联蛋白A家族在母胎界面及不良妊娠中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 430-434. |
[7] | 吴春蕾, 赵晓丽, 邱韵桓, 王宝娟, 董融, 李凯茜, 夏天. 结合基因芯片与单细胞转录组鉴定反复种植失败患者子宫内膜的细胞间通讯[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 265-273. |
[8] | 吴宇轩, 孟子凡, 董丽, 季慧. 宫腔镜子宫内膜息肉手术后冻融胚胎移植时机对妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 274-278. |
[9] | 李宁, 张安妮, 何晓霞, 张学红. 冻融胚胎移植后妊娠期高血压疾病发生的列线图预测模型构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 177-184. |
[10] | 张爱玉, 栾翠玉, 王冬梅, 蒋帅. IVF-ET不孕症患者就医延迟现状及影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 190-194. |
[11] | 王晶, 王晓慧. 子宫内膜小细胞神经内分泌癌一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 212-215. |
[12] | 姜乐然, 张园, 王琳, 刁飞扬. 人类子宫内膜的单细胞组学研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 216-221. |
[13] | 高朝阳, 章宁晴, 陈琼华, 吴荣锋. 环状RNA在子宫内膜异位症不孕患者卵泡颗粒细胞中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 243-248. |
[14] | 王芳, 万桃, 杨永秀. 2型糖尿病相关子宫内膜癌与肠道菌群相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 249-253. |
[15] | 谷旭照, 沈豪飞, 高敏, 刘阿慧, 王娜, 杨雯景, 张学红. 双子宫合并卵巢妊娠一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 118-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||