[1] |
Da Broi MG, Giorgi V, Wang F, et al. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications[J]. J Assist Reprod Genet, 2018, 35(5):735-751. doi: 10.1007/s10815-018-1143-3.
doi: 10.1007/s10815-018-1143-3
URL
|
[2] |
Hu H, Tian M, Ding C, et al. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection[J]. Front Immunol, 2018, 9:3083. doi: 10.3389/fimmu.2018.03083.
doi: 10.3389/fimmu.2018.03083
URL
|
[3] |
Hardy M, Day ML, Morris MB. Redox Regulation and Oxidative Stress in Mammalian Oocytes and Embryos Developed In Vivo and In Vitro[J]. Int J Environ Res Public Health, 2021, 18(21):11374. doi: 10.3390/ijerph182111374.
doi: 10.3390/ijerph182111374
URL
|
[4] |
Lee J, Song CH. Effect of Reactive Oxygen Species on the Endoplasmic Reticulum and Mitochondria during Intracellular Pathogen Infection of Mammalian Cells[J]. Antioxidants(Basel), 2021, 10(6):872. doi: 10.3390/antiox10060872.
doi: 10.3390/antiox10060872
|
[5] |
Zhang Z, Zhang L, Zhou L, et al. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress[J]. Redox Biol, 2019, 25:101047. doi: 10.1016/j.redox.2018.11.005.
doi: S2213-2317(18)30895-4
pmid: 30470534
|
[6] |
Jia W, Chen P, Cheng Y. PRDX4 and Its Roles in Various Cancers[J]. Technol Cancer Res Treat, 2019, 18:1533033819864313. doi: 10.1177/1533033819864313.
doi: 10.1177/1533033819864313
|
[7] |
Tran DT, Pottekat A, Mir SA, et al. Unbiased Profiling of the Human Proinsulin Biosynthetic Interaction Network Reveals a Role for Peroxiredoxin 4 in Proinsulin Folding[J]. Diabetes, 2020, 69(8):1723-1734. doi: 10.2337/db20-0245.
doi: 10.2337/db20-0245
pmid: 32457219
|
[8] |
Lipinski S, Pfeuffer S, Arnold P, et al. Prdx4 limits caspase-1 activation and restricts inflammasome-mediated signaling by extracellular vesicles[J]. EMBO J, 2019, 38(20): e101266. doi: 10.15252/embj.2018101266.
doi: 10.15252/embj.2018101266
|
[9] |
Bartoszewska S, Collawn JF. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia[J]. Cell Mol Biol Lett, 2020, 25:18. doi: 10.1186/s11658-020-00212-1.
doi: 10.1186/s11658-020-00212-1
pmid: 32190062
|
[10] |
Harada M, Takahashi N, Azhary JM, et al. Endoplasmic reticulum stress: a key regulator of the follicular microenvironment in the ovary[J]. Mol Hum Reprod, 2021, 27(7): gaaa088. doi: 10.1093/molehr/gaaa088.
doi: 10.1093/molehr/gaaa088
URL
|
[11] |
Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8):421-438. doi: 10.1038/s41580-020-0250-z.
doi: 10.1038/s41580-020-0250-z
URL
|
[12] |
Kopp MC, Larburu N, Durairaj V, et al. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor[J]. Nat Struct Mol Biol, 2019, 26(11):1053-1062. doi: 10.1038/s41594-019-0324-9.
doi: 10.1038/s41594-019-0324-9
URL
|
[13] |
Hwang J, Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways[J]. Trends Biochem Sci, 2018, 43(8):593-605. doi: 10.1016/j.tibs.2018.06.005.
doi: 10.1016/j.tibs.2018.06.005
URL
|
[14] |
Hetz C, Papa FR. The Unfolded Protein Response and Cell Fate Control[J]. Mol Cell, 2018, 69(2):169-181. doi: 10.1016/j.molcel.2017.06.017.
doi: 10.1016/j.molcel.2017.06.017
URL
|
[15] |
Caillard A, Sadoune M, Cescau A, et al. QSOX1, a novel actor of cardiac protection upon acute stress in mice[J]. J Mol Cell Cardiol, 2018, 119:75-86. doi: 10.1016/j.yjmcc.2018.04.014.
doi: S0022-2828(18)30144-5
pmid: 29723491
|
[16] |
Konno T, Pinho Melo E, Lopes C, et al. ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding[J]. J Cell Biol, 2015, 211(2):253-259. doi: 10.1083/jcb.201506123.
doi: 10.1083/jcb.201506123
URL
|
[17] |
Chang TK, Lawrence DA, Lu M, et al. Coordination between Two Branches of the Unfolded Protein Response Determines Apoptotic Cell Fate[J]. Mol Cell, 2018, 71(4):629-636.e5. doi: 10.1016/j.molcel.2018.06.038.
doi: 10.1016/j.molcel.2018.06.038
|
[18] |
Zheng X, Zheng X, Wang X, et al. Acute hypoxia induces apoptosis of pancreatic β-cell by activation of the unfolded protein response and upregulation of CHOP[J]. Cell Death Dis, 2012, 3(6):e322. doi: 10.1038/cddis.2012.66.
doi: 10.1038/cddis.2012.66
URL
|
[19] |
Olivares-Silva F, Espitia-Corredor J, Letelier A, et al. TGF-β1 decreases CHOP expression and prevents cardiac fibroblast apoptosis induced by endoplasmic reticulum stress[J]. Toxicol In Vitro, 2021, 70: 105041. doi: 10.1016/j.tiv.2020.105041.
doi: 10.1016/j.tiv.2020.105041
pmid: 33127435
|
[20] |
Gupta R, Ambasta RK, Kumar P. Autophagy and apoptosis cascade: which is more prominent in neuronal death?[J]. Cell Mol Life Sci, 2021, 78(24):8001-8047. doi: 10.1007/s00018-021-04004-4.
doi: 10.1007/s00018-021-04004-4
URL
|
[21] |
Bertolotti M, Yim SH, Garcia-Manteiga JM, et al. B- to plasma-cell terminal differentiation entails oxidative stress and profound reshaping of the antioxidant responses[J]. Antioxid Redox Signal, 2010, 13(8):1133-1144. doi: 10.1089/ars.2009.3079.
doi: 10.1089/ars.2009.3079
URL
|
[22] |
Kam MK, Lee DG, Kim B, et al. Peroxiredoxin 4 ameliorates amyloid beta oligomer-mediated apoptosis by inhibiting ER-stress in HT-22 hippocampal neuron cells[J]. Cell Biol Toxicol, 2019, 35(6):573-588. doi: 10.1007/s10565-019-09477-5.
doi: 10.1007/s10565-019-09477-5
URL
|
[23] |
Fass D, Thorpe C. Chemistry and Enzymology of Disulfide Cross-Linking in Proteins[J]. Chem Rev, 2018, 118(3):1169-1198. doi: 10.1021/acs.chemrev.7b00123.
doi: 10.1021/acs.chemrev.7b00123
URL
|