Journal of International Reproductive Health/Family Planning ›› 2022, Vol. 41 ›› Issue (1): 37-41.doi: 10.12280/gjszjk.20210453
• Review • Previous Articles Next Articles
XU Yu-wei, LI Wen-jing, MAO Xin-yi, MA Zhuo-yao(), DING Zhi-de(
)
Received:
2021-09-24
Published:
2022-01-15
Online:
2022-02-17
Contact:
MA Zhuo-yao,DING Zhi-de
E-mail:1716578796@qq.com;zding@shsmu.edu.cn
XU Yu-wei, LI Wen-jing, MAO Xin-yi, MA Zhuo-yao, DING Zhi-de. The Role of Sperm TsRNA in Paternal Inheritance[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 37-41.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Kumar P, Kuscu C, Dutta A. Biogenesis and Function of Transfer RNA-Related Fragments (tRFs)[J]. Trends Biochem Sci, 2016, 41(8):679-689. doi: 10.1016/j.tibs.2016.05.004.
doi: 10.1016/j.tibs.2016.05.004 URL |
[2] |
Pan Q, Han T, Li G. Novel insights into the roles of tRNA-derived small RNAs[J]. RNA Biol, 2021, 18(12):2157-2167. doi: 10.1080/15476286.2021.1922009.
doi: 10.1080/15476286.2021.1922009 URL |
[3] |
Goodarzi H, Liu X, Nguyen HC, et al. Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement[J]. Cell, 2015, 161(4):790-802. doi: 10.1016/j.cell.2015.02.053.
doi: 10.1016/j.cell.2015.02.053 pmid: 25957686 |
[4] |
Kumar P, Anaya J, Mudunuri SB, et al. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets[J]. BMC Biol, 2014, 12:78. doi: 10.1186/s12915-014-0078-0.
doi: 10.1186/s12915-014-0078-0 URL |
[5] |
Park J, Ahn SH, Shin MG, et al. tRNA-Derived Small RNAs: Novel Epigenetic Regulators[J]. Cancers(Basel), 2020, 12(10):2773. doi: 10.3390/cancers12102773.
doi: 10.3390/cancers12102773 |
[6] |
Lyons SM, Gudanis D, Coyne SM, et al. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs[J]. Nat Commun, 2017, 8(1):1127. doi: 10.1038/s41467-017-01278-w.
doi: 10.1038/s41467-017-01278-w URL |
[7] |
Lyons SM, Achorn C, Kedersha NL, et al. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression[J]. Nucleic Acids Res, 2016, 44(14):6949-6960. doi: 10.1093/nar/gkw418.
doi: 10.1093/nar/gkw418 URL |
[8] |
Guzzi N, Cieśla M, Ngoc P, et al. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells[J]. Cell, 2018, 173(5):1204-1216. e26. doi: 10.1016/j.cell.2018.03.008.
doi: 10.1016/j.cell.2018.03.008 URL |
[9] |
Luo S, He F, Luo J, et al. Drosophila tsRNAs preferentially suppress general translation machinery via antisense pairing and participate in cellular starvation response[J]. Nucleic Acids Res, 2018, 46(10):5250-5268. doi: 10.1093/nar/gky189.
doi: 10.1093/nar/gky189 URL |
[10] |
Kim HK, Fuchs G, Wang S, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis[J]. Nature, 2017, 552(7683):57-62. doi: 10.1038/nature25005.
doi: 10.1038/nature25005 URL |
[11] |
Shen L, Tan Z, Gan M, et al. tRNA-Derived Small Non-Coding RNAs as Novel Epigenetic Molecules Regulating Adipogenesis[J]. Biomolecules, 2019, 9(7):274. doi: 10.3390/biom9070274.
doi: 10.3390/biom9070274 URL |
[12] |
Zhu J, Cheng M, Zhao X. A tRNA-derived fragment (tRF-3001b) aggravates the development of nonalcoholic fatty liver disease by inhibiting autophagy[J]. Life Sci, 2020, 257:118125. doi: 10.1016/j.lfs.2020.118125.
doi: 10.1016/j.lfs.2020.118125 URL |
[13] |
Zhong F, Hu Z, Jiang K, et al. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis[J]. Cell Res, 2019, 29(7):548-561. doi: 10.1038/s41422-019-0175-2.
doi: 10.1038/s41422-019-0175-2 pmid: 31076642 |
[14] |
Sharma U, Conine CC, Shea JM, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals[J]. Science, 2016, 351(6271):391-396. doi: 10.1126/science.aad6780.
doi: 10.1126/science.aad6780 URL |
[15] |
Peng H, Shi J, Zhang Y, et al. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm[J]. Cell Res, 2012, 22(11):1609-1612. doi: 10.1038/cr.2012.141.
doi: 10.1038/cr.2012.141 URL |
[16] |
Hutcheon K, McLaughlin EA, Stanger SJ, et al. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa[J]. RNA Biol, 2017, 14(12):1776-1790. doi: 10.1080/15476286.2017.1356569.
doi: 10.1080/15476286.2017.1356569 pmid: 28816603 |
[17] |
Chu C, Yu L, Wu B, et al. A sequence of 28S rRNA-derived small RNAs is enriched in mature sperm and various somatic tissues and possibly associates with inflammation[J]. J Mol Cell Biol, 2017, 9(3):256-259. doi: 10.1093/jmcb/mjx016.
doi: 10.1093/jmcb/mjx016 URL |
[18] |
Tuorto F, Liebers R, Musch T, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synjournal[J]. Nat Struct Mol Biol, 2012, 19(9):900-905. doi: 10.1038/nsmb.2357.
doi: 10.1038/nsmb.2357 URL |
[19] |
Pereira M, Ribeiro DR, Pinheiro MM, et al. m(5)U54 tRNA Hypomodification by Lack of TRMT2A Drives the Generation of tRNA-Derived Small RNAs[J]. Int J Mol Sci, 2021, 22(6):2941. doi: 10.3390/ijms22062941.
doi: 10.3390/ijms22062941 URL |
[20] |
Safra M, Sas-Chen A, Nir R, et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution[J]. Nature, 2017, 551(7679):251-255. doi: 10.1038/nature24456.
doi: 10.1038/nature24456 URL |
[21] |
Guzzi N, Bellodi C. Novel insights into the emerging roles of tRNA-derived fragments in mammalian development[J]. RNA Biol, 2020, 17(8):1214-1222. doi: 10.1080/15476286.2020.1732694.
doi: 10.1080/15476286.2020.1732694 URL |
[22] |
Sarker G, Sun W, Rosenkranz D, et al. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs[J]. Proc Natl Acad Sci U S A, 2019, 116(21):10547-10556. doi: 10.1073/pnas.1820810116.
doi: 10.1073/pnas.1820810116 URL |
[23] |
Chen Q, Yan M, Cao Z, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder[J]. Science, 2016, 351(6271):397-400. doi: 10.1126/science.aad7977.
doi: 10.1126/science.aad7977 pmid: 26721680 |
[24] |
Fullston T, Ohlsson Teague EM, Palmer NO, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content[J]. FASEB J, 2013, 27(10):4226-4243. doi: 10.1096/fj.12-224048.
doi: 10.1096/fj.12-224048 pmid: 23845863 |
[25] |
Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice[J]. Nat Neurosci, 2014, 17(5):667-669. doi: 10.1038/nn.3695.
doi: 10.1038/nn.3695 |
[26] |
Nätt D, Kugelberg U, Casas E, et al. Human sperm displays rapid responses to diet[J]. PLoS Biol, 2019, 17(12):e3000559. doi: 10.1371/journal.pbio.3000559.
doi: 10.1371/journal.pbio.3000559 URL |
[27] |
Chen X, Sun Q, Zheng Y, et al. Human sperm tsRNA as potential biomarker and therapy target for male fertility[J]. Reproduction, 2021, 161(2):111-122. doi: 10.1530/REP-20-0415.
doi: 10.1530/REP-20-0415 URL |
[28] |
Conine CC, Sun F, Song L, et al. Small RNAs Gained during Epididymal Transit of Sperm Are Essential for Embryonic Development in Mice[J]. Dev Cell, 2018, 46(4):470-480. e3. doi: 10.1016/j.devcel.2018.06.024.
doi: S1534-5807(18)30541-0 pmid: 30057276 |
[29] |
Genuth NR, Barna M. The Discovery of Ribosome Heterogeneity and Its Implications for Gene Regulation and Organismal Life[J]. Mol Cell, 2018, 71(3):364-374. doi: 10.1016/j.molcel.2018.07.018.
doi: S1097-2765(18)30587-2 pmid: 30075139 |
[1] | ZHANG Rui-yan, DENG Han-yu, CHEN Ke-xin, MA Zhuo-yao, LIU Yue, DING Zhi-de. The Research Advances in Sperm Maturation and Paternal Epigenetic Inheritance Regulated by Epididymosomes [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 518-523. |
[2] | ZHAO An-qi, LIU Lin, TAN Xiao-fang. HPV Transmission through Sperm and Its Impact on Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 328-331. |
[3] | WU Zhu-lian, WANG Cai-zhu, ZHOU Hong, CHEN Huan-hua, LIN Ruo-yun, SHU Jin-hui. Research Progress on the Cryopreservation of Small Numbers of Human Sperm [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 222-227. |
[4] | CHANG Tian-qing, WU Hua, FENG Rui-zhi, QIAN Yun. Research Progress of Proteins Related to Sperm Acrosome Development [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 44-49. |
[5] | ZHANG Meng-hui, LIU Xiao-cong, GUO Yi-hong. N6-Methyladenosine in Reproductive System: Effect and Regulation [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(4): 306-309. |
[6] | CHEN Xiao-jun, JIA Yu-sen, ZHANG Zhi-jie. Protamine and Teratozoospermia: A Short Review [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(3): 216-220. |
[7] | REN Mei-qi, YANG Han-yun, SHI Xiao. Research Progress in the Physiological Mechanism of Sperm Activition [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(6): 519-523. |
[8] | ZHANG Guo-zhong, ZHENG Jie, HU Yan-mei, WU Xue-yi, XIE Ping, YANG Zong-fu. Effect of Supplementary Inositol on Sperm Quality in Infertile Men [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(6): 524-528. |
[9] | ZHANG Pan-pan, Nuerbiya Alifu, Maowulan Maimaitiyiming, MA Wen-jing, Xieraili Maimaiti, Adilijiang Yiming, Xiamixinuer Yilike, TONG Zhuo-yun. Screening and Bioinformatics Analysis of Sperm Differentially Expressed Proteins by Tandem Mass Spectrometry Tags Technology in Patients with Asthenozoospermia [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(5): 357-360. |
[10] | XIE Qing-e, WANG Meng-yao, LIANG Tan, LIU Ya-jing. Research Progress of Melatonin in Assisted Reproductive Technology [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(5): 397-400. |
[11] | YAO Ye-jie,GAO Yi-ning,JIN Jun,YU Dai-er,HE Chen,LIU Qiang. The Structure and Function of Ion Channels KSper and CatSper in Sperm Tail [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(2): 147-152. |
[12] | SHI Lei,JIANG Chen-yi,WU Wang-shu,ZHU Xin-ye,YU Cheng-xuan,LIU Yue,DING Zhi-de. Research Advances on the Role of Zinc Transporter in Male Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2019, 38(4): 318-322. |
[13] | ZHANG Xin-yue,WANG Hui,QIAN Yun. Sperm-Related Factors of Recurrent Spontaneous Abortion [J]. Journal of International Reproductive Health/Family Planning, 2019, 38(2): 137-141. |
[14] | HE Yuan-man,DU Hui-lan. The Emerging Roles and Therapeutic Potential of Sirtuins in Field of Reproductive Medicine [J]. Journal of International Reproductive Health/Family Planning, 2019, 38(2): 146-149. |
[15] | QIN Xin-ran,XUE Chun-ran,PENG Qi-hua,HAN Si-yang,JING Jia,DING Zhi-de. The Effects of Oxidative Stress on Male Reproductive System [J]. Journal of International Reproductive Health/Family Planning, 2018, 37(6): 492-497. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||