Journal of International Reproductive Health/Family Planning ›› 2021, Vol. 40 ›› Issue (6): 481-485.doi: 10.12280/gjszjk.20210213
• Review • Previous Articles Next Articles
CHEN Ran-ran, SONG Dian-rong()
Received:
2021-05-14
Published:
2021-11-15
Online:
2021-11-30
Contact:
SONG Dian-rong
E-mail:songdr58@126.com
CHEN Ran-ran, SONG Dian-rong. The Major Signaling Pathways in Early Embryonic Development[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 481-485.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Molè MA, Weberling A, Zernicka-Goetz M. Comparative analysis of human and mouse development: From zygote to pre-gastrulation[J]. Curr Top Dev Biol, 2020, 136:113-138. doi: 10.1016/bs.ctdb.2019.10.002.
doi: 10.1016/bs.ctdb.2019.10.002 |
[2] |
Frum T, Ralston A. Visualizing HIPPO Signaling Components in Mouse Early Embryonic Development[J]. Methods Mol Biol, 2019, 1893:335-352. doi: 10.1007/978-1-4939-8910-2_25.
doi: 10.1007/978-1-4939-8910-2_25 |
[3] |
Sasaki K, Kojitani N, Hirose H, et al. Shank2 Binds to aPKC and Controls Tight Junction Formation with Rap1 Signaling during Establishment of Epithelial Cell Polarity[J]. Cell Rep, 2020, 31(1):107407. doi: 10.1016/j.celrep.2020.02.088.
doi: 10.1016/j.celrep.2020.02.088 URL |
[4] |
Nishioka N, Yamamoto S, Kiyonari H, et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos[J]. Mech Dev, 2008, 125(3/4):270-283. doi: 10.1016/j.mod.2007.11.002.
doi: 10.1016/j.mod.2007.11.002 URL |
[5] |
Lorthongpanich C, Messerschmidt DM, Chan SW, et al. Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation[J]. Genes Dev, 2013, 27(13):1441-1446. doi: 10.1101/gad.219618.113.
doi: 10.1101/gad.219618.113 URL |
[6] |
Bassalert C, Valverde-Estrella L, Chazaud C. Primitive Endoderm Differentiation: From Specification to Epithelialization[J]. Curr Top Dev Biol, 2018, 128:81-104. doi: 10.1016/bs.ctdb.2017.12.001.
doi: S0070-2153(17)30071-6 pmid: 29477172 |
[7] |
Cang Z, Wang Y, Wang Q, et al. A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development[J]. PLoS Comput Biol, 2021, 17(3):e1008571. doi: 10.1371/journal.pcbi.1008571.
doi: 10.1371/journal.pcbi.1008571 URL |
[8] |
Deathridge J, Antolović V, Parsons M, et al. Live imaging of ERK signalling dynamics in differentiating mouse embryonic stem cells[J]. Development, 2019, 146(12):dev172940. doi: 10.1242/dev.172940.
doi: 10.1242/dev.172940 |
[9] |
Li YP, Duan FF, Zhao YT, et al. A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells[J]. Nat Commun, 2019, 10(1):1368. doi: 10.1038/s41467-019-08911-w.
doi: 10.1038/s41467-019-08911-w URL |
[10] |
Azami T, Bassalert C, Allègre N, et al. Regulation of the ERK signalling pathway in the developing mouse blastocyst[J]. Development, 2019, 146(14):dev177139. doi: 10.1242/dev.177139.
doi: 10.1242/dev.177139 |
[11] |
Molotkov A, Mazot P, Brewer JR, et al. Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency[J]. Dev Cell, 2017, 41(5):511-526.e4. doi: 10.1016/j.devcel.2017.05.004.
doi: S1534-5807(17)30386-6 pmid: 28552557 |
[12] |
Yamanaka Y, Lanner F, Rossant J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst[J]. Development, 2010, 137(5):715-724. doi: 10.1242/dev.043471.
doi: 10.1242/dev.043471 pmid: 20147376 |
[13] |
De Belly H, Stubb A, Yanagida A, et al. Membrane Tension Gates ERK-Mediated Regulation of Pluripotent Cell Fate[J]. Cell Stem Cell, 2021, 28(2):273-284.e6. doi: 10.1016/j.stem.2020.10.018.
doi: 10.1016/j.stem.2020.10.018 URL |
[14] |
Kunath T, Saba-El-Leil MK, Almousailleakh M, et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment[J]. Development, 2007, 134(16):2895-2902. doi: 10.1242/dev.02880.
doi: 10.1242/dev.02880 pmid: 17660198 |
[15] |
Sozen B, Demir N, Zernicka-Goetz M. BMP signalling is required for extra-embryonic ectoderm development during pre-to-post-implantation transition of the mouse embryo[J]. Dev Biol, 2021, 470:84-94. doi: 10.1016/j.ydbio.2020.11.005.
doi: 10.1016/j.ydbio.2020.11.005 URL |
[16] |
Beppu H, Kawabata M, Hamamoto T, et al. BMP type II receptor is required for gastrulation and early development of mouse embryos[J]. Dev Biol, 2000, 221(1):249-258. doi: 10.1006/dbio.2000.9670.
doi: 10.1006/dbio.2000.9670 pmid: 10772805 |
[17] |
Suwinska A, Ciemerych MA. Factors regulating pluripotency and differentiation in early mammalian embryos and embryo-derived stem cells[J]. Vitam Horm, 2011, 87:1-37. doi: 10.1016/B978-0-12-386015-6.00022-6.
doi: 10.1016/B978-0-12-386015-6.00022-6 pmid: 22127235 |
[18] |
Rogers KW, ElGamacy M, Jordan BM, et al. Optogenetic investigation of BMP target gene expression diversity[J]. Elife, 2020, 9:e58641. doi: 10.7554/eLife.58641.
doi: 10.7554/eLife.58641 URL |
[19] |
de Jaime-Soguero A, Abreu de Oliveira WA, Lluis F. The Pleiotropic Effects of the Canonical Wnt Pathway in Early Development and Pluripotency[J]. Genes(Basel), 2018, 9(2):93. doi: 10.3390/genes9020093.
doi: 10.3390/genes9020093 |
[20] |
Huelsken J, Vogel R, Brinkmann V, et al. Requirement for beta-catenin in anterior-posterior axis formation in mice[J]. J Cell Biol, 2000, 148(3):567-578. doi: 10.1083/jcb.148.3.567.
doi: 10.1083/jcb.148.3.567 pmid: 10662781 |
[21] |
Garabedian MV, Good MC. OptoLRP6 Illuminates Wnt Signaling in Early Embryo Development[J]. J Mol Biol, 2021, 433(18):167053. doi: 10.1016/j.jmb.2021.167053.
doi: 10.1016/j.jmb.2021.167053 URL |
[22] |
Afouda BA, Nakamura Y, Shaw S, et al. Foxh1/Nodal Defines Context-Specific Direct Maternal Wnt/β-Catenin Target Gene Regulation in Early Development[J]. iScience, 2020, 23(7):101314. doi: 10.1016/j.isci.2020.101314.
doi: S2589-0042(20)30501-0 pmid: 32650116 |
[23] |
Zhu P, Xu X, Lin X. Both ciliary and non-ciliary functions of Foxj1a confer Wnt/β-catenin signaling in zebrafish left-right patterning[J]. Biol Open, 2015, 4(11):1376-1386. doi: 10.1242/bio.012088.
doi: 10.1242/bio.012088 URL |
[24] |
Souilhol C, Cormier S, Tanigaki K, et al. RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development[J]. Mol Cell Biol, 2006, 26(13):4769-4774. doi: 10.1128/MCB.00319-06.
doi: 10.1128/MCB.00319-06 pmid: 16782866 |
[25] |
Cardano M, Diaferia GR, Conti L, et al. mSEL-1L deficiency affects vasculogenesis and neural stem cell lineage commitment[J]. J Cell Physiol, 2018, 233(4):3152-3163. doi: 10.1002/jcp.26153.
doi: 10.1002/jcp.26153 pmid: 28816361 |
[26] |
Wang Y, Lu P, Wu B, et al. NOTCH maintains developmental cardiac gene network through WNT5A[J]. J Mol Cell Cardiol, 2018, 125:98-105. doi: 10.1016/j.yjmcc.2018.10.014.
doi: 10.1016/j.yjmcc.2018.10.014 URL |
[27] |
Menchero S, Rollan I, Lopez-Izquierdo A, et al. Transitions in cell potency during early mouse development are driven by Notch[J]. Elife, 2019, 8:e42930. doi: 10.7554/eLife.42930.
doi: 10.7554/eLife.42930 URL |
[28] |
Roussel CJ, Roussel MR. A mathematical model of the biochemical network underlying left-right asymmetry establishment in mammals[J]. Biosystems, 2018, 173:281-297. doi: 10.1016/j.biosystems.2018.10.003.
doi: 10.1016/j.biosystems.2018.10.003 URL |
[29] |
Zhang H, Chen S, Shang C, et al. Interplay between Lefty and Nodal signaling is essential for the organizer and axial formation in amphioxus embryos[J]. Dev Biol, 2019, 456(1):63-73. doi: 10.1016/j.ydbio.2019.08.006.
doi: 10.1016/j.ydbio.2019.08.006 URL |
[30] |
Sekine R, Shibata T, Ebisuya M. Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty[J]. Nat Commun, 2018, 9(1):5456. doi: 10.1038/s41467-018-07847-x.
doi: 10.1038/s41467-018-07847-x pmid: 30575724 |
[31] |
Wei S, Wang Q. Molecular regulation of Nodal signaling during mesendoderm formation[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(1):74-81. doi: 10.1093/abbs/gmx128.
doi: 10.1093/abbs/gmx128 URL |
[32] |
Liu Z, Woo S, Weiner OD. Nodal signaling has dual roles in fate specification and directed migration during germ layer segregation in zebrafish[J]. Development, 2018, 145(17):dev163535. doi: 10.1242/dev.163535.
doi: 10.1242/dev.163535 |
[33] |
Reich S, Kayastha P, Teegala S, et al. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling[J]. BMC Mol Cell Biol, 2020, 21(1):39. doi: 10.1186/s12860-020-00282-1.
doi: 10.1186/s12860-020-00282-1 URL |
[34] |
Vincent SD, Dunn NR, Hayashi S, et al. Cell fate decisions within the mouse organizer are governed by graded Nodal signals[J]. Genes Dev, 2003, 17(13):1646-1662. doi: 10.1101/gad.1100503.
doi: 10.1101/gad.1100503 URL |
[35] |
Dunn NR, Vincent SD, Oxburgh L, et al. Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo[J]. Development, 2004, 131(8):1717-1728. doi: 10.1242/dev.01072.
doi: 10.1242/dev.01072 pmid: 15084457 |
[36] |
Linneberg-Agerholm M, Wong YF, Romero Herrera JA, et al. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm[J]. Development, 2019, 146(24):dev180620. doi: 10.1242/dev.180620.
doi: 10.1242/dev.180620 |
[1] | LI Jia-li, TU Xu-xu, WANG Shi-meng, NIU Ding-ren, FENG Xiao-ling. Recurrent Spontaneous Abortion Related to Oxidative Stress at Maternal-Fetal Interface [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 435-440. |
[2] | JIAO Meng-wen, ZHANG Yue-wen, WANG Ling, MO Shao-kang. Advances in CircRNAs Research in Reproductive System [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 322-327. |
[3] | ZHAO An-qi, LIU Lin, TAN Xiao-fang. HPV Transmission through Sperm and Its Impact on Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 328-331. |
[4] | LI Miao-miao, JIANG Hong, CAI Peng-da. Influence Factor Analysis and Forecasting Research of Embryonic Arrest [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 332-337. |
[5] | REN Lu-lu, REN Wen-chao, ZHANG Xiao-xuan, REN Chun-e. Pathways of Insulin Resistance in Ovarian Granulosa Cells of Polycystic Ovary Syndrome Patients [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 32-37. |
[6] | NI Dan-yu, YANG Ye, XIE Qi-jun, JIANG Wei, LING Xiu-feng. The Effect of Poly-Pronucleus Incidence on Embryo Development and Pregnancy Outcome after ICSI [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 272-276. |
[7] | WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, GAO Na, DONG Rong, XIA Tian. Regulatory Role of N6-Methyladenosine Modification in Oogenesis and Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 310-316. |
[8] | CUI Yu-gui, JIA Hong-yan, SHI Chen-nan, YAN Zheng-jie, LIU Jia-yin, MA Xiang. Clinical Practice of Oocyte Mitochondrial Transplantation and Ethical Issue [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 89-94. |
[9] | ZHU Xia, LI Hui-zhen, LIU Dan, MA Tian-zhong. The Signaling Pathways Involved in Embryo Implantation [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 409-413. |
[10] | ZHANG Xiao-xuan, ZHAI Chao, LI Guang-can, REN Chun-e. Leukemia Inhibitory Factor Related to Endometrial Receptivity [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 327-331. |
[11] | WEN Ping-hua, WANG Xi-wen, ZHANG Wei, LIU Yi, LIU Heng-wei. HIF-1α and Related Pathways in the Pathogenesis of Endometriosis [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(3): 258-264. |
[12] | CHEN Zhi-jian, WANG Cai-zhu. Application of Time-Lapse Imaging Technology for Embryo Selection: A Review [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 139-142. |
[13] | YUAN Li-chao, QU Zu, BAI Xiao-xia. Research Progress on the Mechanism of Intrauterine Transmission of Hepatitis B Virus [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 57-61. |
[14] | SONG Wen-guang, FU Hao, GUO Min, HU Chun-xiu. In Vitro Activation of Primordial Follicles in Patients with Primary Ovarian Insufficiency [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 486-489. |
[15] | FENG Yu-ting, LUO Shu-hong, LI Lan, SU Qin, CHENG Jing-qiu, YE Hong-xia. Expression of MiR-146a-5p in Decidual Tissue of Unexplained Recurrent Spontaneous Abortion [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(4): 286-293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||