Journal of International Reproductive Health/Family Planning ›› 2022, Vol. 41 ›› Issue (5): 409-413.doi: 10.12280/gjszjk.20220074
• Review • Previous Articles Next Articles
ZHU Xia, LI Hui-zhen, LIU Dan, MA Tian-zhong()
Received:
2022-02-12
Published:
2022-09-15
Online:
2022-10-12
Contact:
MA Tian-zhong
E-mail:tiann8283@163.com
ZHU Xia, LI Hui-zhen, LIU Dan, MA Tian-zhong. The Signaling Pathways Involved in Embryo Implantation[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 409-413.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Sehring J, Beltsos A, Jeelani R. Human implantation: The complex interplay between endometrial receptivity, inflammation, and the microbiome[J]. Placenta, 2022, 117:179-186. doi: 10.1016/j.placenta.2021.12.015.
doi: 10.1016/j.placenta.2021.12.015 URL |
[2] |
Massimiani M, Lacconi V, La Civita F, et al. Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk[J]. Int J Mol Sci, 2019, 21(1):23. doi: 10.3390/ijms21010023.
doi: 10.3390/ijms21010023 URL |
[3] |
Moldovan GE, Miele L, Fazleabas AT. Notch signaling in reproduction[J]. Trends Endocrinol Metab, 2021, 32(12):1044-1057. doi: 10.1016/j.tem.2021.08.002.
doi: 10.1016/j.tem.2021.08.002 URL |
[4] |
Afshar Y, Miele L, Fazleabas AT. Notch1 is regulated by chorionic gonadotropin and progesterone in endometrial stromal cells and modulates decidualization in primates[J]. Endocrinology, 2012, 153(6):2884-2896. doi: 10.1210/en.2011-2122.
doi: 10.1210/en.2011-2122 pmid: 22535768 |
[5] |
Afshar Y, Jeong JW, Roqueiro D, et al. Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse[J]. FASEB J, 2012, 26(1):282-294. doi: 10.1096/fj.11-184663.
doi: 10.1096/fj.11-184663 pmid: 21990372 |
[6] |
Wu Y, He JP, Xie J, et al. Notch1 is crucial for decidualization and maintaining the first pregnancy in the mouse[J]. Biol Reprod, 2021, 104(3):539-547. doi: 10.1093/biolre/ioaa222.
doi: 10.1093/biolre/ioaa222 URL |
[7] |
Bao H, Sun Y, Yang N, et al. Uterine Notch2 facilitates pregnancy recognition and corpus luteum maintenance via upregulating decidual Prl8a2[J]. PLoS Genet, 2021, 17(8):e1009786. doi: 10.1371/journal.pgen.1009786.
doi: 10.1371/journal.pgen.1009786 URL |
[8] |
Zhou W, Menkhorst E, Dimitriadis E. Jagged1 regulates endometrial receptivity in both humans and mice[J]. FASEB J, 2021, 35(8):e21784. doi: 10.1096/fj.202100590R.
doi: 10.1096/fj.202100590R |
[9] |
Marchetto NM, Begum S, Wu T, et al. Endothelial Jagged1 Antagonizes Dll4/Notch Signaling in Decidual Angiogenesis during Early Mouse Pregnancy[J]. Int J Mol Sci, 2020, 21(18):6477. doi: 10.3390/ijms21186477.
doi: 10.3390/ijms21186477 URL |
[10] |
Jiang Y, Yuan X, Li B, et al. TOB1 modulates the decidualization of human endometrial stromal cells via the Notch pathway[J]. J Assist Reprod Genet, 2021, 38(10):2641-2650. doi: 10.1007/s10815-021-02277-z.
doi: 10.1007/s10815-021-02277-z URL |
[11] |
Batista MR, Diniz P, Torres A, et al. Notch signaling in mouse blastocyst development and hatching[J]. BMC Dev Biol, 2020, 20(1):9. doi: 10.1186/s12861-020-00216-2.
doi: 10.1186/s12861-020-00216-2 pmid: 32482162 |
[12] |
Hu X, Li J, Fu M, et al. The JAK/STAT signaling pathway: from bench to clinic[J]. Signal Transduct Target Ther, 2021, 6(1):402. doi: 10.1038/s41392-021-00791-1.
doi: 10.1038/s41392-021-00791-1 URL |
[13] |
Feng Q, Gao B, Huang H, et al. Growth hormone promotes human endometrial glandular cells proliferation and motion through the GHR-STAT3/5 pathway[J]. Ann Transl Med, 2020, 8(4):53. doi: 10.21037/atm.2019.12.08.
doi: 10.21037/atm.2019.12.08 pmid: 32175347 |
[14] |
Zhou C, Lv M, Wang P, et al. Sequential activation of uterine epithelial IGF1R by stromal IGF1 and embryonic IGF2 directs normal uterine preparation for embryo implantation[J]. J Mol Cell Biol, 2021, 13(9):646-661. doi: 10.1093/jmcb/mjab034.
doi: 10.1093/jmcb/mjab034 pmid: 34097060 |
[15] |
Mrozikiewicz AE, Oż arowski M, Jędrzejczak P. Biomolecular Markers of Recurrent Implantation Failure-A Review[J]. Int J Mol Sci, 2021, 22(18):10082. doi: 10.3390/ijms221810082.
doi: 10.3390/ijms221810082 URL |
[16] |
Fukui Y, Hirota Y, Saito-Fujita T, et al. Uterine Epithelial LIF Receptors Contribute to Implantation Chamber Formation in Blastocyst Attachment[J]. Endocrinology, 2021, 162(11):bqab169. doi: 10.1210/endocr/bqab169.
doi: 10.1210/endocr/bqab169 URL |
[17] |
Hamelin-Morrissette J, Dallagi A, Girouard J, et al. Leukemia inhibitory factor regulates the activation of inflammatory signals in macrophages and trophoblast cells[J]. Mol Immunol, 2020, 120:32-42. doi: 10.1016/j.molimm.2020.01.021.
doi: S0161-5890(19)30602-9 pmid: 32045772 |
[18] |
Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1):3. doi: 10.1038/s41392-021-00762-6.
doi: 10.1038/s41392-021-00762-6 URL |
[19] |
Sidrat T, Rehman ZU, Joo MD, et al. Wnt/β-catenin Pathway-Mediated PPARδ Expression during Embryonic Development Differentiation and Disease[J]. Int J Mol Sci, 2021, 22(4):1854. doi: 10.3390/ijms22041854.
doi: 10.3390/ijms22041854 |
[20] |
Chen Q, Ni Y, Han M, et al. Integrin-linked kinase improves uterine receptivity formation by activating Wnt/β-catenin signaling and up-regulating MMP-3/9 expression[J]. Am J Transl Res, 2020, 12(6):3011-3022.
pmid: 32655826 |
[21] | Zhang FL, Huang YL, Zhou XY, et al. Telocytes enhanced in vitro decidualization and mesenchymal-epithelial transition in endometrial stromal cells via Wnt/β-catenin signaling pathway[J]. Am J Transl Res, 2020, 12(8):4384-4396. |
[22] |
Oghbaei F, Zarezadeh R, Jafari-Gharabaghlou D, et al. Epithelial-mesenchymal transition process during embryo implantation[J]. Cell Tissue Res, 2022, 388(1):1-17. doi: 10.1007/s00441-021-03574-w.
doi: 10.1007/s00441-021-03574-w URL |
[23] |
Li Q, Shi J, Liu W. The role of Wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT)[J]. Cell Commun Signal, 2020, 18(1):108. doi: 10.1186/s12964-020-00562-5.
doi: 10.1186/s12964-020-00562-5 pmid: 32650795 |
[24] |
Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020, 19(3):1997-2007. doi: 10.3892/etm.2020.8454.
doi: 10.3892/etm.2020.8454 |
[25] |
马铭艳, 杨美霞, 韩晓敏, 等. MAPK信号通路在自然流产中机制研究进展[J]. 中国计划生育学杂志, 2020, 28(9):1504-1508. doi: 10.3969/j.issn.1004-8189.2020.09.043.
doi: 10.3969/j.issn.1004-8189.2020.09.043 |
[26] |
Goryszewska-Szczurek E, Baryla M, Kaczynski P, et al. Prokineticin 1-prokineticin receptor 1 signaling in trophoblast promotes embryo implantation and placenta development[J]. Sci Rep, 2021, 11(1):13715. doi: 10.1038/s41598-021-93102-1.
doi: 10.1038/s41598-021-93102-1 pmid: 34215801 |
[27] | 胡世福, 夏伟, 朱长虹. P38αMAPK在雌性生殖系统中的研究进展[J]. 国际生殖健康/计划生育杂志, 2015, 34(1):64-68. |
[28] |
Williams LM, Gilmore TD. Looking Down on NF-κB[J]. Mol Cell Biol, 2020, 40(15):e00104-20. doi: 10.1128/MCB.00104-20.
doi: 10.1128/MCB.00104-20 |
[29] |
Zhu C, Hu W, Zhao M, et al. The Pre-Implantation Embryo Induces Uterine Inflammatory Reaction in Mice[J]. Reprod Sci, 2021, 28(1):60-68. doi: 10.1007/s43032-020-00259-7.
doi: 10.1007/s43032-020-00259-7 URL |
[30] |
Sakowicz A. The role of NFκB in the three stages of pregnancy - implantation, maintenance, and labour: a review article[J]. BJOG, 2018, 125(11):1379-1387. doi: 10.1111/1471-0528.15172.
doi: 10.1111/1471-0528.15172 URL |
[31] |
Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology[J]. Cell, 2017, 168(1/2):37-57. doi: 10.1016/j.cell.2016.12.012.
doi: 10.1016/j.cell.2016.12.012 URL |
[32] | Ersahin A, Acet M, Acet T, et al. Disturbed endometrial NF-κB expression in women with recurrent implantation failure[J]. Eur Rev Med Pharmacol Sci, 2016, 20(24):5037-5040. |
[33] |
Feng R, Qin X, Li Q, et al. Progesterone regulates inflammation and receptivity of cells via the NF-κB and LIF/STAT3 pathways[J]. Theriogenology, 2022, 186:50-59. doi: 10.1016/j.theriogenology.2022.04.005.
doi: 10.1016/j.theriogenology.2022.04.005 pmid: 35430548 |
[1] | XIE Yu-xin, WANG Rui-xue, CHEN Meng-na, CHU Ji-jun. The Role of Annexin A Family at Maternal-Fetal Interface and Related Adverse Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 430-434. |
[2] | LI Jia-li, TU Xu-xu, WANG Shi-meng, NIU Ding-ren, FENG Xiao-ling. Recurrent Spontaneous Abortion Related to Oxidative Stress at Maternal-Fetal Interface [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 435-440. |
[3] | WU Chun-lei, ZHAO Xiao-li, QIU Yun-huan, WANG Bao-juan, DONG Rong, LI Kai-xi, XIA Tian. Integration of Gene Expression Microarrays and Single-Cell Transcriptomics to Identify Intercellular Communication in the Endometrium of Recurrent Implantation Failure Patients [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 265-273. |
[4] | JIANG Le-ran, ZHANG Yuan, WANG Lin, DIAO Fei-yang. Research Progress in Single-Cell Omics of Human Endometrium [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 216-221. |
[5] | WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, XIA Tian. Immunometabolic Microenvironment at the Maternal-Fetal Interface Regulating Embryo Implantation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 138-143. |
[6] | REN Lu-lu, REN Wen-chao, ZHANG Xiao-xuan, REN Chun-e. Pathways of Insulin Resistance in Ovarian Granulosa Cells of Polycystic Ovary Syndrome Patients [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 32-37. |
[7] | XIANG Yi-ning, FENG Wei-wei. Advances in Pinopodes for Endometrial Receptivity Assessment [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 414-418. |
[8] | WANG Yan, MENG Qing-xia. Clinical Treatment Strategies of Repeated Implantation Failure [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 302-307. |
[9] | ZHANG Xiao-xuan, ZHAI Chao, LI Guang-can, REN Chun-e. Leukemia Inhibitory Factor Related to Endometrial Receptivity [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 327-331. |
[10] | ZHANG Ming-wei, QI Qian-rong, XIE Qing-zhen. Relationship of Uterine Microbiota and Female Reproductive Healthy Diseases [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(3): 214-218. |
[11] | WEN Ping-hua, WANG Xi-wen, ZHANG Wei, LIU Yi, LIU Heng-wei. HIF-1α and Related Pathways in the Pathogenesis of Endometriosis [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(3): 258-264. |
[12] | YUAN Li-chao, QU Zu, BAI Xiao-xia. Research Progress on the Mechanism of Intrauterine Transmission of Hepatitis B Virus [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 57-61. |
[13] | ZANG Zhao-wen, DAI Cai-feng, GAO Jing-yue, DENG Xiao-hui. Research Progress on Endometrial Immune Factors of Recurrent Implantation Failure [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 68-73. |
[14] | LI Hong-wanyu, YANG Jie-qiong, ZHANG Cong. Research Progress on the Function of MicroRNA in Decidualization [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 476-480. |
[15] | CHEN Ran-ran, SONG Dian-rong. The Major Signaling Pathways in Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 481-485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||