国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (3): 260-264.doi: 10.12280/gjszjk.20200457
• 综述 • 上一篇
收稿日期:
2020-07-30
出版日期:
2021-05-15
发布日期:
2021-05-28
通讯作者:
王永红
E-mail:wangyh19672000@126.com
基金资助:
QIAO Guo-dong, WANG Yong-hong△()
Received:
2020-07-30
Published:
2021-05-15
Online:
2021-05-28
Contact:
WANG Yong-hong
E-mail:wangyh19672000@126.com
摘要:
中性粒细胞活化后可形成中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs),参与人体内诸多疾病的病理生理过程,但其具体的发病机制尚未阐明。目前研究表明,NADPH氧化酶等细胞因子在其形成过程中发挥重要作用,并通过蛋白酪氨酸激酶(protein tyrosine kinase,PTK)和磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K)等细胞信号通路对NETs的形成过程进行调节,有助于探讨NETs在子痫前期等生殖相关疾病中的作用。综述NETs的形成及其相关作用机制的研究进展。
乔国栋, 王永红. 中性粒细胞胞外诱捕网的形成及其在生殖相关疾病中的作用[J]. 国际生殖健康/计划生育, 2021, 40(3): 260-264.
QIAO Guo-dong, WANG Yong-hong. Neutrophil Extracellular Traps and Related Reproductive Diseases[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(3): 260-264.
[1] |
Brinkmann V. Neutrophil Extracellular Traps in the Second Decade[J]. J Innate Immun, 2018,10(5/6):414-421. doi: 10.1159/000489829.
doi: 10.1159/000489829 URL |
[2] |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004,303(5663):1532-1535. doi: 10.1126/science.1092385.
doi: 10.1126/science.1092385 URL |
[3] |
Estúa-Acosta GA, Zamora-Ortiz R, Buentello-Volante B, et al. Neutrophil Extracellular Traps: Current Perspectives in the Eye[J]. Cells, 2019,8(9):979. doi: 10.3390/cells8090979.
doi: 10.3390/cells8090979 URL |
[4] |
Yousefi S, Simon D, Stojkov D, et al. In vivo evidence for extracellular DNA trap formation[J]. Cell Death Dis, 2020,11(4):300. doi: 10.1038/s41419-020-2497-x.
doi: 10.1038/s41419-020-2497-x URL pmid: 32355207 |
[5] |
Stojkov D, Amini P, Oberson K, et al. ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation[J]. J Cell Biol, 2017,216(12):4073-4090. doi: 10.1083/jcb.201611168.
doi: 10.1083/jcb.201611168 URL |
[6] |
Brinkmann V. Neutrophil Extracellular Traps in the Second Decade[J]. J Innate Immun, 2018,10(5/6):414-421. doi: 10.1159/000489829.
doi: 10.1159/000489829 URL |
[7] |
Tatsiy O, McDonald PP. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways[J]. Front Immunol, 2018,9:2036. doi: 10.3389/fimmu.2018.02036.
doi: 10.3389/fimmu.2018.02036 URL pmid: 30279690 |
[8] |
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, et al. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview[J]. Front Immunol, 2017,8:81. doi: 10.3389/fimmu.2017.00081.
doi: 10.3389/fimmu.2017.00081 URL pmid: 28220120 |
[9] |
de Bont CM, Koopman W, Boelens WC, et al. Stimulus-dependent chromatin dynamics, citrullination, calcium signalling and ROS production during NET formation[J]. Biochim Biophys Acta Mol Cell Res, 2018,1865(11 Pt A):1621-1629. doi: 10.1016/j.bbamcr.2018.08.014.
doi: 10.1016/j.bbamcr.2018.08.014 URL |
[10] |
Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps[J]. J Cell Biol, 2007,176(2):231-241. doi: 10.1083/jcb.200606027.
doi: 10.1083/jcb.200606027 URL |
[11] |
Nadesalingam A, Chen J, Farahvash A, et al. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis[J]. Front Immunol, 2018,9:359. doi: 10.3389/fimmu.2018.00359.
doi: 10.3389/fimmu.2018.00359 URL pmid: 29593709 |
[12] |
Wang L, Zhou X, Yin Y, et al. Hyperglycemia Induces Neutrophil Extracellular Traps Formation Through an NADPH Oxidase-Dependent Pathway in Diabetic Retinopathy[J]. Front Immunol, 2018,9:3076. doi: 10.3389/fimmu.2018.03076.
doi: 10.3389/fimmu.2018.03076 URL |
[13] |
Zabieglo K, Majewski P, Majchrzak-Gorecka M, et al. The inhibitory effect of secretory leukocyte protease inhibitor (SLPI) on formation of neutrophil extracellular traps[J]. J Leukoc Biol, 2015,98(1):99-106. doi: 10.1189/jlb.4AB1114-543R.
doi: 10.1189/jlb.4AB1114-543R URL |
[14] |
Björnsdottir H, Welin A, Michaëlsson E, et al. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species[J]. Free Radic Biol Med, 2015,89:1024-1035. doi: 10.1016/j.freeradbiomed.2015.10.398.
doi: 10.1016/j.freeradbiomed.2015.10.398 URL |
[15] | Odobasic D, Kitching AR, Holdsworth SR. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase[J]. J Immunol Res, 2016,2016:2349817. doi: 10.1155/2016/2349817. |
[16] | Wong SL, Wagner DD . Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging[J]. FASEB J, 2018, 32(12):fj201800691R. doi: 10.1096/fj.201800691R. |
[17] |
Gordon RA, Herter JM, Rosetti F, et al. Lupus and proliferative nephritis are PAD4 independent in murine models[J]. JCI Insight, 2017,2(10):e92926. doi: 10.1172/jci.insight.92926.
doi: 10.1172/jci.insight.92926 URL |
[18] |
Guiducci E, Lemberg C, Küng N, et al. Candida albicans-Induced NETosis Is Independent of Peptidylarginine Deiminase 4[J]. Front Immunol, 2018,9:1573. doi: 10.3389/fimmu.2018.01573.
doi: 10.3389/fimmu.2018.01573 URL pmid: 30038623 |
[19] |
Sharma A, Simonson TJ, Jondle CN, et al. Mincle-Mediated Neutrophil Extracellular Trap Formation by Regulation of Autophagy[J]. J Infect Dis, 2017,215(7):1040-1048. doi: 10.1093/infdis/jix072.
doi: 10.1093/infdis/jix072 URL pmid: 28186242 |
[20] |
Sil P, Wicklum H, Surell C, et al. Macrophage-derived IL-1β enhances monosodium urate crystal-triggered NET formation[J]. Inflamm Res, 2017,66(3):227-237. doi: 10.1007/s00011-016-1008-0.
doi: 10.1007/s00011-016-1008-0 URL |
[21] |
Itakura A, McCarty OJ. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy[J]. Am J Physiol Cell Physiol, 2013,305(3):C348-354. doi: 10.1152/ajpcell.00108.2013.
doi: 10.1152/ajpcell.00108.2013 URL |
[22] |
Xue Y, Du M, Sheng H, et al. Escherichia coli O157:H7 suppresses host autophagy and promotes epithelial adhesion via Tir-mediated and cAMP-independent activation of protein kinase A[J]. Cell Death Discov, 2017,3:17055. doi: 10.1038/cddiscovery.2017.55.
doi: 10.1038/cddiscovery.2017.55 URL |
[23] |
Ma R, Li T, Cao M, et al. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy[J]. Cell Death Dis, 2016,7(6):e2283. doi: 10.1038/cddis.2016.186.
doi: 10.1038/cddis.2016.186 URL |
[24] |
Xu F, Zhang C, Zou Z, et al. Aging-related Atg5 defect impairs neutrophil extracellular traps formation[J]. Immunology, 2017,151(4):417-432. doi: 10.1111/imm.12740.
doi: 10.1111/imm.2017.151.issue-4 URL |
[25] |
Teimourian S, Moghanloo E. Role of PTEN in neutrophil extracellular trap formation[J]. Mol Immunol, 2015,66(2):319-324. doi: 10.1016/j.molimm.2015.03.251.
doi: 10.1016/j.molimm.2015.03.251 URL |
[26] |
Fonseca Z, Díaz-Godínez C, Mora N, et al. Entamoeba histolytica Induce Signaling via Raf/MEK/ERK for Neutrophil Extracellular Trap (NET) Formation[J]. Front Cell Infect Microbiol, 2018,8:226. doi: 10.3389/fcimb.2018.00226.
doi: 10.3389/fcimb.2018.00226 URL |
[27] |
Grimberg-Peters D, Büren C, Windolf J, et al. Hyperbaric Oxygen Reduces Production of Reactive Oxygen Species in Neutrophils from Polytraumatized Patients Yielding in the Inhibition of p38 MAP Kinase and Downstream Pathways[J]. PLoS One, 2016,11(8):e0161343. doi: 10.1371/journal.pone.0161343.
doi: 10.1371/journal.pone.0161343 URL |
[28] | Alemán OR, Mora N, Cortes-Vieyra R, et al. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation[J]. Front Immunol, 2016,7:277. doi: 10.3389/fimmu.2016.00277. |
[29] |
Ma F, Chang X, Wang G, et al. Streptococcus Suis Serotype 2 Stimulates Neutrophil Extracellular Traps Formation via Activation of p38 MAPK and ERK1/2[J]. Front Immunol, 2018,9:2854. doi: 10.3389/fimmu.2018.02854.
doi: 10.3389/fimmu.2018.02854 URL |
[30] |
Nanì S, Fumagalli L, Sinha U, et al. Src family kinases and Syk are required for neutrophil extracellular trap formation in response to β-glucan particles[J]. J Innate Immun, 2015,7(1):59-73. doi: 10.1159/000365249.
doi: 10.1159/000365249 URL |
[31] |
Silva JC, Rodrigues NC, Thompson-Souza GA, et al. Mac-1 triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination[J]. J Leukoc Biol, 2020,107(1):69-83. doi: 10.1002/JLB.4A0119-009RR.
doi: 10.1002/jlb.v107.1 URL |
[32] |
Torene R, Nirmala N, Obici L, et al. Canakinumab reverses overexpression of inflammatory response genes in tumour necrosis factor receptor-associated periodic syndrome[J]. Ann Rheum Dis, 2017,76(1):303-309. doi: 10.1136/annrheumdis-2016-209335.
doi: 10.1136/annrheumdis-2016-209335 URL |
[33] |
Desai J, Foresto-Neto O, Honarpisheh M, et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin[J]. Sci Rep, 2017,7(1):15003. doi: 10.1038/s41598-017-15106-0.
doi: 10.1038/s41598-017-15106-0 URL |
[34] |
Gomez-Lopez N, Romero R, Xu Y, et al. Neutrophil Extracellular Traps in the Amniotic Cavity of Women with Intra-Amniotic Infection: A New Mechanism of Host Defense[J]. Reprod Sci, 2017,24(8):1139-1153. doi: 10.1177/1933719116678690.
doi: 10.1177/1933719116678690 URL pmid: 27884950 |
[35] |
Hu Y, Li H, Yan R, et al. Increased Neutrophil Activation and Plasma DNA Levels in Patients with Pre-Eclampsia[J]. Thromb Haemost, 2018,118(12):2064-2073. doi: 10.1055/s-0038-1675788.
doi: 10.1055/s-0038-1675788 URL |
[36] |
Barr FD, Ochsenbauer C, Wira CR, et al. Neutrophil extracellular traps prevent HIV infection in the female genital tract[J]. Mucosal Immunol, 2018,11(5):1420-1428. doi: 10.1038/s41385-018-0045-0.
doi: 10.1038/s41385-018-0045-0 URL |
[1] | 高晓丽, 苏婧, 李增彦, 李洁. 14例妊娠相关溶血尿毒症综合征临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 458-461. |
[2] | 柳芳蕾, 冯晓玲. 甲状腺相关激素与子痫前期的相关性[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 348-352. |
[3] | 林凯璇, 闻浩, 杨夫艳. 基于知识图谱的早发型子痫前期发病预测模型相关研究的可视化分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 101-107. |
[4] | 宋秋瑾, 钱晓红, 陈骞. 肠道菌群与妊娠并发症相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 409-413. |
[5] | 何玥, 崔红梅. 铁死亡在产科疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 414-418. |
[6] | 陈铖, 冯晓玲. 白细胞介素-1β与妊娠及其相关疾病的关系[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 161-166. |
[7] | 裴娇娇, 黄超林, 陈蛟. 铁死亡与胎盘源性疾病的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(5): 425-429. |
[8] | 高倩倩, 冯晓玲. 环状RNA与妊娠相关疾病[J]. 国际生殖健康/计划生育, 2022, 41(5): 430-435. |
[9] | 韩昕宇, 吴天强, 冯晓玲. Kisspeptin与妊娠及其相关疾病关系的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(5): 420-426. |
[10] | 曹小宛, 陈黎, 宋珍珍, 张国英. 白细胞介素33在妊娠相关疾病中的作用[J]. 国际生殖健康/计划生育, 2021, 40(5): 427-430. |
[11] | 张雪颖, 应小燕, 许波群. 环状RNA在女性生殖系统中的研究进展 [J]. 国际生殖健康/计划生育, 2020, 39(4): 308-313. |
[12] | 冯晓玲, 郭鲁秦, 李娜. 胎盘外泌体在子痫前期的研究进展[J]. 国际生殖健康/计划生育, 2020, 39(4): 345-348. |
[13] | 冯晓玲,贾丹,陈璐,张杨. 胎盘外泌体与妊娠及其并发症的研究进展 [J]. 国际生殖健康/计划生育, 2019, 38(2): 166-169. |
[14] | 李赛,郭珍,周欢欢. 不同剂量低分子肝素对子痫前期患者二次妊娠结局的影响[J]. 国际生殖健康/计划生育, 2018, 37(4): 300-302. |
[15] | 陈梦凡,陈丹青. 妊娠期三酰甘油代谢的研究进展[J]. 国际生殖健康/计划生育, 2018, 37(2): 154-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||