国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (5): 409-413.doi: 10.12280/gjszjk.20220074
收稿日期:
2022-02-12
出版日期:
2022-09-15
发布日期:
2022-10-12
通讯作者:
马天仲
E-mail:tiann8283@163.com
基金资助:
ZHU Xia, LI Hui-zhen, LIU Dan, MA Tian-zhong()
Received:
2022-02-12
Published:
2022-09-15
Online:
2022-10-12
Contact:
MA Tian-zhong
E-mail:tiann8283@163.com
摘要:
胚胎植入及胎儿发育是母胎相互识别、相互适应的过程,该过程蕴含复杂的分子机制,至今尚未阐明。胚胎植入失败是不明原因性不孕、早期流产和反复种植失败的重要原因之一。胚胎植入与子宫内膜容受性密切相关,胚胎植入过程中机体分泌的各种细胞因子可以调控子宫内膜容受性,有效改善妊娠结局。目前研究已发现Notch、Janus激酶-信号转导及转录活化因子、Wnt/β-连环蛋白、丝裂原活化蛋白激酶和核因子κB等信号通路与胚胎植入息息相关。综述这些胚胎植入相关的信号通路及其研究进展,探讨胚胎着床机制,并为改善妊娠结局提供理论依据。
朱霞, 李慧珍, 刘丹, 马天仲. 胚胎植入的相关信号通路[J]. 国际生殖健康/计划生育, 2022, 41(5): 409-413.
ZHU Xia, LI Hui-zhen, LIU Dan, MA Tian-zhong. The Signaling Pathways Involved in Embryo Implantation[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 409-413.
[1] |
Sehring J, Beltsos A, Jeelani R. Human implantation: The complex interplay between endometrial receptivity, inflammation, and the microbiome[J]. Placenta, 2022, 117:179-186. doi: 10.1016/j.placenta.2021.12.015.
doi: 10.1016/j.placenta.2021.12.015 URL |
[2] |
Massimiani M, Lacconi V, La Civita F, et al. Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk[J]. Int J Mol Sci, 2019, 21(1):23. doi: 10.3390/ijms21010023.
doi: 10.3390/ijms21010023 URL |
[3] |
Moldovan GE, Miele L, Fazleabas AT. Notch signaling in reproduction[J]. Trends Endocrinol Metab, 2021, 32(12):1044-1057. doi: 10.1016/j.tem.2021.08.002.
doi: 10.1016/j.tem.2021.08.002 URL |
[4] |
Afshar Y, Miele L, Fazleabas AT. Notch1 is regulated by chorionic gonadotropin and progesterone in endometrial stromal cells and modulates decidualization in primates[J]. Endocrinology, 2012, 153(6):2884-2896. doi: 10.1210/en.2011-2122.
doi: 10.1210/en.2011-2122 pmid: 22535768 |
[5] |
Afshar Y, Jeong JW, Roqueiro D, et al. Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse[J]. FASEB J, 2012, 26(1):282-294. doi: 10.1096/fj.11-184663.
doi: 10.1096/fj.11-184663 pmid: 21990372 |
[6] |
Wu Y, He JP, Xie J, et al. Notch1 is crucial for decidualization and maintaining the first pregnancy in the mouse[J]. Biol Reprod, 2021, 104(3):539-547. doi: 10.1093/biolre/ioaa222.
doi: 10.1093/biolre/ioaa222 URL |
[7] |
Bao H, Sun Y, Yang N, et al. Uterine Notch2 facilitates pregnancy recognition and corpus luteum maintenance via upregulating decidual Prl8a2[J]. PLoS Genet, 2021, 17(8):e1009786. doi: 10.1371/journal.pgen.1009786.
doi: 10.1371/journal.pgen.1009786 URL |
[8] |
Zhou W, Menkhorst E, Dimitriadis E. Jagged1 regulates endometrial receptivity in both humans and mice[J]. FASEB J, 2021, 35(8):e21784. doi: 10.1096/fj.202100590R.
doi: 10.1096/fj.202100590R |
[9] |
Marchetto NM, Begum S, Wu T, et al. Endothelial Jagged1 Antagonizes Dll4/Notch Signaling in Decidual Angiogenesis during Early Mouse Pregnancy[J]. Int J Mol Sci, 2020, 21(18):6477. doi: 10.3390/ijms21186477.
doi: 10.3390/ijms21186477 URL |
[10] |
Jiang Y, Yuan X, Li B, et al. TOB1 modulates the decidualization of human endometrial stromal cells via the Notch pathway[J]. J Assist Reprod Genet, 2021, 38(10):2641-2650. doi: 10.1007/s10815-021-02277-z.
doi: 10.1007/s10815-021-02277-z URL |
[11] |
Batista MR, Diniz P, Torres A, et al. Notch signaling in mouse blastocyst development and hatching[J]. BMC Dev Biol, 2020, 20(1):9. doi: 10.1186/s12861-020-00216-2.
doi: 10.1186/s12861-020-00216-2 pmid: 32482162 |
[12] |
Hu X, Li J, Fu M, et al. The JAK/STAT signaling pathway: from bench to clinic[J]. Signal Transduct Target Ther, 2021, 6(1):402. doi: 10.1038/s41392-021-00791-1.
doi: 10.1038/s41392-021-00791-1 URL |
[13] |
Feng Q, Gao B, Huang H, et al. Growth hormone promotes human endometrial glandular cells proliferation and motion through the GHR-STAT3/5 pathway[J]. Ann Transl Med, 2020, 8(4):53. doi: 10.21037/atm.2019.12.08.
doi: 10.21037/atm.2019.12.08 pmid: 32175347 |
[14] |
Zhou C, Lv M, Wang P, et al. Sequential activation of uterine epithelial IGF1R by stromal IGF1 and embryonic IGF2 directs normal uterine preparation for embryo implantation[J]. J Mol Cell Biol, 2021, 13(9):646-661. doi: 10.1093/jmcb/mjab034.
doi: 10.1093/jmcb/mjab034 pmid: 34097060 |
[15] |
Mrozikiewicz AE, Oż arowski M, Jędrzejczak P. Biomolecular Markers of Recurrent Implantation Failure-A Review[J]. Int J Mol Sci, 2021, 22(18):10082. doi: 10.3390/ijms221810082.
doi: 10.3390/ijms221810082 URL |
[16] |
Fukui Y, Hirota Y, Saito-Fujita T, et al. Uterine Epithelial LIF Receptors Contribute to Implantation Chamber Formation in Blastocyst Attachment[J]. Endocrinology, 2021, 162(11):bqab169. doi: 10.1210/endocr/bqab169.
doi: 10.1210/endocr/bqab169 URL |
[17] |
Hamelin-Morrissette J, Dallagi A, Girouard J, et al. Leukemia inhibitory factor regulates the activation of inflammatory signals in macrophages and trophoblast cells[J]. Mol Immunol, 2020, 120:32-42. doi: 10.1016/j.molimm.2020.01.021.
doi: S0161-5890(19)30602-9 pmid: 32045772 |
[18] |
Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1):3. doi: 10.1038/s41392-021-00762-6.
doi: 10.1038/s41392-021-00762-6 URL |
[19] |
Sidrat T, Rehman ZU, Joo MD, et al. Wnt/β-catenin Pathway-Mediated PPARδ Expression during Embryonic Development Differentiation and Disease[J]. Int J Mol Sci, 2021, 22(4):1854. doi: 10.3390/ijms22041854.
doi: 10.3390/ijms22041854 |
[20] |
Chen Q, Ni Y, Han M, et al. Integrin-linked kinase improves uterine receptivity formation by activating Wnt/β-catenin signaling and up-regulating MMP-3/9 expression[J]. Am J Transl Res, 2020, 12(6):3011-3022.
pmid: 32655826 |
[21] | Zhang FL, Huang YL, Zhou XY, et al. Telocytes enhanced in vitro decidualization and mesenchymal-epithelial transition in endometrial stromal cells via Wnt/β-catenin signaling pathway[J]. Am J Transl Res, 2020, 12(8):4384-4396. |
[22] |
Oghbaei F, Zarezadeh R, Jafari-Gharabaghlou D, et al. Epithelial-mesenchymal transition process during embryo implantation[J]. Cell Tissue Res, 2022, 388(1):1-17. doi: 10.1007/s00441-021-03574-w.
doi: 10.1007/s00441-021-03574-w URL |
[23] |
Li Q, Shi J, Liu W. The role of Wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT)[J]. Cell Commun Signal, 2020, 18(1):108. doi: 10.1186/s12964-020-00562-5.
doi: 10.1186/s12964-020-00562-5 pmid: 32650795 |
[24] |
Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020, 19(3):1997-2007. doi: 10.3892/etm.2020.8454.
doi: 10.3892/etm.2020.8454 |
[25] |
马铭艳, 杨美霞, 韩晓敏, 等. MAPK信号通路在自然流产中机制研究进展[J]. 中国计划生育学杂志, 2020, 28(9):1504-1508. doi: 10.3969/j.issn.1004-8189.2020.09.043.
doi: 10.3969/j.issn.1004-8189.2020.09.043 |
[26] |
Goryszewska-Szczurek E, Baryla M, Kaczynski P, et al. Prokineticin 1-prokineticin receptor 1 signaling in trophoblast promotes embryo implantation and placenta development[J]. Sci Rep, 2021, 11(1):13715. doi: 10.1038/s41598-021-93102-1.
doi: 10.1038/s41598-021-93102-1 pmid: 34215801 |
[27] | 胡世福, 夏伟, 朱长虹. P38αMAPK在雌性生殖系统中的研究进展[J]. 国际生殖健康/计划生育杂志, 2015, 34(1):64-68. |
[28] |
Williams LM, Gilmore TD. Looking Down on NF-κB[J]. Mol Cell Biol, 2020, 40(15):e00104-20. doi: 10.1128/MCB.00104-20.
doi: 10.1128/MCB.00104-20 |
[29] |
Zhu C, Hu W, Zhao M, et al. The Pre-Implantation Embryo Induces Uterine Inflammatory Reaction in Mice[J]. Reprod Sci, 2021, 28(1):60-68. doi: 10.1007/s43032-020-00259-7.
doi: 10.1007/s43032-020-00259-7 URL |
[30] |
Sakowicz A. The role of NFκB in the three stages of pregnancy - implantation, maintenance, and labour: a review article[J]. BJOG, 2018, 125(11):1379-1387. doi: 10.1111/1471-0528.15172.
doi: 10.1111/1471-0528.15172 URL |
[31] |
Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology[J]. Cell, 2017, 168(1/2):37-57. doi: 10.1016/j.cell.2016.12.012.
doi: 10.1016/j.cell.2016.12.012 URL |
[32] | Ersahin A, Acet M, Acet T, et al. Disturbed endometrial NF-κB expression in women with recurrent implantation failure[J]. Eur Rev Med Pharmacol Sci, 2016, 20(24):5037-5040. |
[33] |
Feng R, Qin X, Li Q, et al. Progesterone regulates inflammation and receptivity of cells via the NF-κB and LIF/STAT3 pathways[J]. Theriogenology, 2022, 186:50-59. doi: 10.1016/j.theriogenology.2022.04.005.
doi: 10.1016/j.theriogenology.2022.04.005 pmid: 35430548 |
[1] | 谢娱新, 王瑞雪, 陈梦娜, 储继军. 膜联蛋白A家族在母胎界面及不良妊娠中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 430-434. |
[2] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[3] | 吴春蕾, 赵晓丽, 邱韵桓, 王宝娟, 董融, 李凯茜, 夏天. 结合基因芯片与单细胞转录组鉴定反复种植失败患者子宫内膜的细胞间通讯[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 265-273. |
[4] | 姜乐然, 张园, 王琳, 刁飞扬. 人类子宫内膜的单细胞组学研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 216-221. |
[5] | 闻鑫, 赵晓丽, 栾祖乾, 夏天. 母胎界面免疫代谢微环境调节胚胎着床的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 138-143. |
[6] | 任露露, 任文超, 张晓轩, 任春娥. 多囊卵巢综合征患者卵巢颗粒细胞胰岛素抵抗的相关信号通路[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 32-37. |
[7] | 熊玉晶, 罗婉彬, 艾细雄, 徐艳文. 慢性子宫内膜炎致炎机制的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 60-65. |
[8] | 项怡宁, 冯炜炜. 胞饮突评估子宫内膜容受性的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(5): 414-418. |
[9] | 王焰, 孟庆霞. 反复种植失败的临床处理策略[J]. 国际生殖健康/计划生育, 2022, 41(4): 302-307. |
[10] | 张晓轩, 翟超, 李光璨, 任春娥. 子宫内膜容受性与白血病抑制因子的相关性[J]. 国际生殖健康/计划生育, 2022, 41(4): 327-331. |
[11] | 张明玮, 漆倩荣, 谢青贞. 宫腔微生物与女性生殖健康疾病的关系[J]. 国际生殖健康/计划生育, 2022, 41(3): 214-218. |
[12] | 温萍华, 王细文, 张蔚, 刘义, 刘恒炜. 子宫内膜异位症发生发展中的HIF-1α及其相关信号通路[J]. 国际生殖健康/计划生育, 2022, 41(3): 258-264. |
[13] | 袁里朝, 曲足, 白晓霞. 乙型肝炎病毒宫内传播机制研究进展[J]. 国际生殖健康/计划生育, 2022, 41(1): 57-61. |
[14] | 臧朝雯, 代彩凤, 高景悦, 邓晓惠. 胚胎反复种植失败的子宫内膜免疫因素及其研究进展[J]. 国际生殖健康/计划生育, 2022, 41(1): 68-73. |
[15] | 李洪菀菀, 杨洁琼, 张丛. 微小RNA在子宫内膜蜕膜化中的功能[J]. 国际生殖健康/计划生育, 2021, 40(6): 476-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||