[1] |
Ye W, Xie T, Song Y, et al. The role of androgen and its related signals in PCOS[J]. J Cell Mol Med, 2021, 25(4):1825-1837. doi: 10.1111/jcmm.16205.
doi: 10.1111/jcmm.16205
URL
|
[2] |
Khan MJ, Ullah A, Basit S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives[J]. Appl Clin Genet, 2019, 12:249-260. doi: 10.2147/TACG.S200341.
doi: 10.2147/TACG.S200341
URL
|
[3] |
Kristensen LS, Andersen MS, Stagsted L, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11):675-691. doi: 10.1038/s41576-019-0158-7.
doi: 10.1038/s41576-019-0158-7
pmid: 31395983
|
[4] |
Ma Z, Zhao H, Zhang Y, et al. Novel circular RNA expression in the cumulus cells of patients with polycystic ovary syndrome[J]. Arch Gynecol Obstet, 2019, 299(6):1715-1725. doi: 10.1007/s00404-019-05122-y.
doi: 10.1007/s00404-019-05122-y
URL
|
[5] |
Zhao C, Zhou Y, Shen X, et al. Circular RNA expression profiling in the fetal side of placenta from maternal polycystic ovary syndrome and circ_0023942 inhibits the proliferation of human ovarian granulosa cell[J]. Arch Gynecol Obstet, 2020, 301(4):963-971. doi: 10.1007/s00404-020-05495-5.
doi: 10.1007/s00404-020-05495-5
URL
|
[6] |
Jia C, Wang S, Yin C, et al. Loss of hsa_circ_0118530 inhibits human granulosa-like tumor cell line KGN cell injury by sponging miR-136[J]. Gene, 2020, 744:144591. doi: 10.1016/j.gene.2020.144591.
doi: 10.1016/j.gene.2020.144591
URL
|
[7] |
Wu G, Xia J, Yang Z, et al. CircASPH promotes KGN cells proliferation through miR-375/MAP2K6 axis in Polycystic Ovary Syndrome[J]. J Cell Mol Med, 2020 Dec 28. doi: 10.1111/jcmm.16231.
doi: 10.1111/jcmm.16231
|
[8] |
Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins[J]. Mol Cancer, 2020, 19(1):172. doi: 10.1186/s12943-020-01286-3.
doi: 10.1186/s12943-020-01286-3
URL
|
[9] |
Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping[J]. Proc Natl Acad Sci U S A, 1996, 93(13):6536-6541. doi: 10.1073/pnas.93.13.6536.
doi: 10.1073/pnas.93.13.6536
pmid: 8692851
|
[10] |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2):141-157. doi: 10.1261/rna.035667.112.
doi: 10.1261/rna.035667.112
URL
|
[11] |
Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2):e30733. doi: 10.1371/journal.pone.0030733.
doi: 10.1371/journal.pone.0030733
URL
|
[12] |
Wang L, Long H, Zheng Q, et al. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression[J]. Mol Cancer, 2019, 18(1):119. doi: 10.1186/s12943-019-1046-7.
doi: 10.1186/s12943-019-1046-7
URL
|
[13] |
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3):256-264. doi: 10.1038/nsmb.2959.
doi: 10.1038/nsmb.2959
URL
|
[14] |
Wang Y, Liu J, Ma J, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases[J]. Mol Cancer, 2019, 18(1):116. doi: 10.1186/s12943-019-1041-z.
doi: 10.1186/s12943-019-1041-z
URL
|
[15] |
Yan Y, Fu G, Ye Y, et al. Exosomes participate in the carcinogenesis and the malignant behavior of gastric cancer[J]. Scand J Gastroenterol, 2017, 52(5):499-504. doi: 10.1080/00365521.2016.1278458.
doi: 10.1080/00365521.2016.1278458
URL
|
[16] |
Li X, Yang L, Chen LL. The Biogenesis, Functions, and Challenges of Circular RNAs[J]. Mol Cell, 2018, 71(3):428-442. doi: 10.1016/j.molcel.2018.06.034.
doi: 10.1016/j.molcel.2018.06.034
URL
|
[17] |
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed[J]. Mol Cell, 2015, 58(5):870-885. doi: 10.1016/j.molcel.2015.03.027.
doi: 10.1016/j.molcel.2015.03.027
pmid: 25921068
|
[18] |
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6):1125-1134. doi: 10.1016/j.cell.2015.02.014.
doi: 10.1016/j.cell.2015.02.014
URL
|
[19] |
Wang LP, Peng XY, Lv XQ, et al. High throughput circRNAs sequencing profile of follicle fluid exosomes of polycystic ovary syndrome patients[J]. J Cell Physiol, 2019 Feb 18. doi: 10.1002/jcp.28201.
doi: 10.1002/jcp.28201
|
[20] |
Huang X, Wu B, Chen M, et al. Depletion of exosomal circLDLR in follicle fluid derepresses miR-1294 function and inhibits estradiol production via CYP19A1 in polycystic ovary syndrome[J]. Aging (Albany NY), 2020, 12(15):15414-15435. doi: 10.18632/aging.103602.
doi: 10.18632/aging.103602
|
[21] |
Che Q, Liu M, Xu J, et al. Characterization of circular RNA expression profiles in cumulus cells from patients with polycystic ovary syndrome[J]. Fertil Steril, 2019, 111(6):1243-1251.e1. doi: 10.1016/j.fertnstert.2019.02.023.
doi: S0015-0282(19)30134-7
pmid: 30979425
|
[22] |
Zhang C, Liu J, Lai M, et al. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome[J]. Arch Gynecol Obstet, 2019, 300(2):431-440. doi: 10.1007/s00404-019-05129-5.
doi: 10.1007/s00404-019-05129-5
URL
|
[23] |
Blesson CS, Chinnathambi V, Hankins GD, et al. Prenatal testosterone exposure induces hypertension in adult females via androgen receptor-dependent protein kinase Cδ-mediated mechanism[J]. Hypertension, 2015, 65(3):683-690. doi: 10.1161/HYPERTENSIONAHA.114.04521.
doi: 10.1161/HYPERTENSIONAHA.114.04521
|
[24] |
Agarwal SK, Judd HL, Magoffin DA. A mechanism for the suppression of estrogen production in polycystic ovary syndrome[J]. J Clin Endocrinol Metab, 1996, 81(10):3686-3691. doi: 10.1210/jcem.81.10.8855823.
doi: 10.1210/jcem.81.10.8855823
|
[25] |
Chen J, Shen S, Tan Y, et al. The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome[J]. J Ovarian Res, 2015, 8:11. doi: 10.1186/s13048-015-0139-1.
doi: 10.1186/s13048-015-0139-1
pmid: 25881575
|
[26] |
Wang J, Chu K, Wang Y, et al. Procr-expressing granulosa cells are highly proliferative and are important for follicle development[J]. iScience, 2021, 24(2):102065. doi: 10.1016/j.isci.2021.102065.
doi: 10.1016/j.isci.2021.102065
URL
|
[27] |
Xu L, Ma Y, Zhang H, et al. HMGA2 regulates circular RNA ASPH to promote tumor growth in lung adenocarcinoma[J]. Cell Death Dis, 2020, 11(7):593. doi: 10.1038/s41419-020-2726-3.
doi: 10.1038/s41419-020-2726-3
URL
|
[28] |
Deng L, Chen Q, Xie J, et al. circPUM1 promotes polycystic ovary syndrome progression by sponging to miR-760[J]. Gene, 2020, 754:144903. doi: 10.1016/j.gene.2020.144903.
doi: 10.1016/j.gene.2020.144903
URL
|