国际生殖健康/计划生育杂志 ›› 2025, Vol. 44 ›› Issue (1): 47-53.doi: 10.12280/gjszjk.20240451
收稿日期:
2024-09-19
出版日期:
2025-01-15
发布日期:
2025-01-22
通讯作者:
徐键,E-mail:Received:
2024-09-19
Published:
2025-01-15
Online:
2025-01-22
Contact:
XU Jian, E-mail: 摘要:
卵巢组织玻璃化冷冻及移植技术是保留生育功能的重要手段,尤其适用于需要接受性腺毒性治疗的年轻肿瘤女性和青春期前儿童。该技术涉及多个影响冷冻及移植效果的因素。在冷冻保护剂的选择上,成分、浓度及平衡时间均对冷冻效果有显著影响。卵巢组织的加工处理和冷冻载体的选择也是影响冷冻移植效果的关键因素之一。在解冻复苏过程中,需精细控制冷冻保护剂的去除速率,以防细胞受损。移植部位的选择可根据患者的实际需求决定。移植初期的缺血缺氧和氧化应激是导致卵泡丢失的重要因素,可通过使用促血管生成因子、干细胞、抗氧化剂等改善移植效果。除此之外,患者年龄、移植次数、妊娠方式等临床因素也会影响移植后的妊娠率。这些因素为优化卵巢组织冷冻移植的成功率提供了科学依据和实践指导,为未来的研究和临床实践提供了新的思路和方向。
王琳, 徐键. 卵巢组织玻璃化冷冻及移植技术的影响因素[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 47-53.
WANG Lin, XU Jian. Influencing Factors of Ovarian Tissue Vitrification and Transplantation Techniques[J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 47-53.
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263. doi: 10.3322/caac.21834. |
[2] |
Amorim CA, Leonel E, Afifi Y, et al. Cryostorage and retransplantation of ovarian tissue as an infertility treatment[J]. Best Pract Res Clin Endocrinol Metab, 2019, 33(1):89-102. doi: 10.1016/j.beem.2018.09.002.
pmid: 31208678 |
[3] |
El Cury-Silva T, Nunes M, Casalechi M, et al. Cryoprotectant agents for ovarian tissue vitrification: Systematic review[J]. Cryobiology, 2021, 103:7-14. doi: 10.1016/j.cryobiol.2021.08.001.
pmid: 34370991 |
[4] |
Yong KW, Laouar L, Elliott J, et al. Review of non-permeating cryoprotectants as supplements for vitrification of mammalian tissues[J]. Cryobiology, 2020, 96:1-11. doi: 10.1016/j.cryobiol.2020.08.012.
pmid: 32910946 |
[5] | Zeng Q, Wang K, He LB, et al. Cryoprotective effect of antifreeze protein Ⅲ on the rabbit ovary[J]. Reprod Fertil Dev, 2022, 34(9):645-657. doi: 10.1071/RD21324. |
[6] | Kong HS, Hong YH, Lee J, et al. Antifreeze Protein Supplementation During the Warming of Vitrified Bovine Ovarian Tissue Can Improve the Ovarian Tissue Quality After Xenotransplantation[J]. Front Endocrinol(Lausanne), 2021,12:672619. doi: 10.3389/fendo.2021.672619. |
[7] | Montano Vizcarra DA, Pinto Silva Y, Bezerra Bruno J, et al. Use of synthetic polymers improves the quality of vitrified caprine preantral follicles in the ovarian tissue[J]. Acta Histochem, 2020, 122(2):151484. doi: 10.1016/j.acthis.2019.151484. |
[8] |
Shahsavari MH, Alves KA, Alves BG, et al. Impacts of different synthetic polymers on vitrification of ovarian tissue[J]. Cryobiology, 2020, 94:66-72. doi: 10.1016/j.cryobiol.2020.04.007.
pmid: 32339491 |
[9] | Fahy GM, Wowk B. Principles of Ice-Free Cryopreservation by Vitrification[J]. Methods Mol Biol, 2021,2180:27-97. doi: 10.1007/ 978-1-0716-0783-1_2. |
[10] | Lee S, Ryu KJ, Kim B, et al. Comparison between Slow Freezing and Vitrification for Human Ovarian Tissue Cryopreservation and Xenotransplantation[J]. Int J Mol Sci, 2019, 20(13):3346. doi: 10.3390/ijms20133346. |
[11] |
Zhao Q, Zhang Y, Su K, et al. Vitrification freezing of large ovarian tissue in the human body[J]. J Ovarian Res, 2019, 12(1):77. doi: 10.1186/s13048-019-0553-x.
pmid: 31438999 |
[12] | Fabbri R, Vicenti R, Macciocca M, et al. Morphological, ultrastructural and functional imaging of frozen/thawed and vitrified/warmed human ovarian tissue retrieved from oncological patients[J]. Hum Reprod, 2016, 31(8):1838-1849. doi: 10.1093/humrep/dew134. |
[13] | Behl S, Joshi VB, Larson NB, et al. Vitrification versus slow freezing of human ovarian tissue: a systematic review and meta-analysis of histological outcomes[J]. J Assist Reprod Genet, 2023, 40(3):455-464. doi: 10.1007/s10815-022-02692-w. |
[14] | Diaz AA, Kubo H, Handa N, et al. A Systematic Review of Ovarian Tissue Transplantation Outcomes by Ovarian Tissue Processing Size for Cryopreservation[J]. Front Endocrinol(Lausanne), 2022, 13:918899. doi: 10.3389/fendo.2022.918899. |
[15] |
Hsueh A, Kawamura K. Hippo signaling disruption and ovarian follicle activation in infertile patients[J]. Fertil Steril, 2020, 114(3):458-464. doi: 10.1016/j.fertnstert.2020.07.031.
pmid: 32782158 |
[16] | Nagamatsu G, Shimamoto S, Hamazaki N, et al. Mechanical stress accompanied with nuclear rotation is involved in the dormant state of mouse oocytes[J]. Sci Adv, 2019, 5(6):eaav9960. doi: 10.1126/sciadv.aav9960. |
[17] | Lopes ÉPF, Tetaping GM, Novaes M, et al. Systematic review and meta-analysis on patented and non-patented vitrification processes to ovarian tissue reported between 2000 and 2021[J]. Anim Reprod, 2023, 20(3):e20230065. doi: 10.1590/1984-3143-AR2023-0065. |
[18] | Porcu E, Tranquillo ML, Notarangelo L, et al. High-security closed devices are efficient and safe to protect human oocytes from potential risk of viral contamination during vitrification and storage especially in the COVID-19 pandemic[J]. J Assist Reprod Genet, 2021, 38(3):681-688. doi: 10.1007/s10815-021-02062-y. |
[19] |
Marin L, Bedoschi G, Kawahara T, et al. History, Evolution and Current State of Ovarian Tissue Auto-Transplantation with Cryopreserved Tissue: a Successful Translational Research Journey from 1999 to 2020[J]. Reprod Sci, 2020, 27(4):955-962. doi: 10.1007/s43032-019-00066-9.
pmid: 32046442 |
[20] |
Yang Y, Wang Y, Xiao Z. Silver closed vitrification system versus slow freezing method for the cryopreservation of human ovarian tissue[J]. Cryo Letters, 2021, 42(4):245-250.
pmid: 35363844 |
[21] | Sugishita Y, Taylan E, Kawahara T, et al. Comparison of open and a novel closed vitrification system with slow freezing for human ovarian tissue cryopreservation[J]. J Assist Reprod Genet, 2021, 38(10):2723-2733. doi: 10.1007/s10815-021-02297-9. |
[22] | Galbinski S, Kowalewski LS, Grigolo GB, et al. Comparison between two cryopreservation techniques of human ovarian cortex: morphological aspects and the heat shock response (HSR)[J]. Cell Stress Chaperones, 2021, 27(2):97-106. doi: 10.1007/s12192-022-01252-6. |
[23] | Olmo A, Barroso P, Barroso F, et al. The Use of High-Intensity Focused Ultrasound for the Rewarming of Cryopreserved Biological Material[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2021, 68(3):599-607. doi: 10.1109/TUFFC.2020.3016950. |
[24] | Karimi S, Tabatabaei SN, Novin MG, et al. Nanowarming improves survival of vitrified ovarian tissue and follicular development in a sheep model[J]. Heliyon, 2023, 9(8):e18828. doi: 10.1016/j.heliyon.2023.e18828. |
[25] | Zhang L, Chi M, Cheng Y, et al. Static magnetic field assisted thawing improves cryopreservation of mouse whole ovaries[J]. Bioeng Transl Med, 2024, 9(1):e10613. doi: 10.1002/btm2.10613. |
[26] |
Practice Committee of the American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion[J]. Fertil Steril, 2019, 112(6):1022-1033. doi: 10.1016/j.fertnstert.2019.09.013.
pmid: 31843073 |
[27] | Dolmans MM, Donnez J. Fertility preservation in women for medical and social reasons: Oocytes vs ovarian tissue[J]. Best Pract Res Clin Obstet Gynaecol, 2021, 70:63-80. doi: 10.1016/j.bpobgyn.2020.06.011. |
[28] |
Bystrova O, Lapina E, Kalugina A, et al. Heterotopic transplantation of cryopreserved ovarian tissue in cancer patients: a case series[J]. Gynecol Endocrinol, 2019, 35(12):1043-1049. doi: 10.1080/09513590.2019.1648413.
pmid: 31373236 |
[29] | Xie B, Li J, Huang Y, et al. Assessing the impact of transplant site on ovarian tissue transplantation: a single-arm meta-analysis[J]. Reprod Biol Endocrinol, 2023, 21(1):120. doi: 10.1186/s12958-023-01167-6. |
[30] | Oktay KH, Marin L. Comparison of orthotopic and heterotopic autologous ovarian tissue transplantation outcomes[J]. Fertil Steril, 2024, 121(1):72-79. doi: 10.1016/j.fertnstert.2023.10.015. |
[31] |
Cacciottola L, Donnez J, Dolmans MM. Ovarian tissue damage after grafting: systematic review of strategies to improve follicle outcomes[J]. Reprod Biomed Online, 2021, 43(3):351-369. doi: 10.1016/j.rbmo.2021.06.019.
pmid: 34384692 |
[32] | Yang C, Chung N, Song C, et al. Promotion of angiogenesis toward transplanted ovaries using nitric oxide releasing nanoparticles in fibrin hydrogel[J]. Biofabrication, 2021,Dec 29, 14(1). doi: 10.1088/1758-5090/ac3f28. |
[33] | Cacciottola L, Nguyen T, Chiti MC, et al. Long-Term Advantages of Ovarian Reserve Maintenance and Follicle Development Using Adipose Tissue-Derived Stem Cells in Ovarian Tissue Transplantation[J]. J Clin Med, 2020, 9(9):2980. doi: 10.3390/jcm9092980. |
[34] |
Cho J, Kim TH, Seok J, et al. Vascular remodeling by placenta-derived mesenchymal stem cells restores ovarian function in ovariectomized rat model via the VEGF pathway[J]. Lab Invest, 2021, 101(3):304-317. doi: 10.1038/s41374-020-00513-1.
pmid: 33303971 |
[35] | Nazary Abrbekoh F, Salimi L, Saghati S, et al. Application of microneedle patches for drug delivery; doorstep to novel therapies[J]. J Tissue Eng, 2022,13:20417314221085390. doi: 10.1177/20417314221085390. |
[36] |
Yan L, Wang L, Wu J, et al. Multi-biofunctional graphene oxide-enhanced poly-L-lactic acid composite nanofiber scaffolds for ovarian function recovery of transplanted-tissue[J]. NPJ Regen Med, 2022, 7(1):52. doi: 10.1038/s41536-022-00236-5.
pmid: 36114211 |
[37] | Sun TC, Liu XC, Yang SH, et al. Melatonin Inhibits Oxidative Stress and Apoptosis in Cryopreserved Ovarian Tissues via Nrf2/HO-1 Signaling Pathway[J]. Front Mol Biosci, 2020,7:163. doi: 10.3389/fmolb.2020.00163. |
[38] |
Damavandi M, Farrokh P, Zavareh S. Effect of Mouse Ovarian Vitrification on Promoter Methylation of Inhba and Inhbb in Granulosa Cells of Follicles[J]. Cryo Letters, 2021, 42(2):67-72.
pmid: 33970982 |
[39] | Len JS, Koh W, Tan SX. The roles of reactive oxygen species and antioxidants in cryopreservation[J]. Biosci Rep, 2019, 39(8):BSR20191601. doi: 10.1042/BSR20191601. |
[40] |
Piras AR, Ariu F, Falchi L, et al. Resveratrol treatment during maturation enhances developmental competence of oocytes after prolonged ovary storage at 4 ℃ in the domestic cat model[J]. Theriogenology, 2020, 144:152-157. doi: 10.1016/j.theriogenology.2020.01.009.
pmid: 31951984 |
[41] | Cao B, Qin J, Pan B, et al. Oxidative Stress and Oocyte Cryopreservation: Recent Advances in Mitigation Strategies Involving Antioxidants[J]. Cells, 2022, 11(22):3573. doi: 10.3390/cells11223573. |
[42] | Marcantonini G, Bartolini D, Zatini L, et al. Natural Cryoprotective and Cytoprotective Agents in Cryopreservation: A Focus on Melatonin[J]. Molecules, 2022, 27(10):3254. doi: 10.3390/molecules27103254. |
[43] |
Cheng LY, Sun TC, Liu XC, et al. Melatonin induction of HSP90 expression exerts cryoprotective effect on ovarian tissue[J]. Cryobiology, 2021, 98:134-138. doi: 10.1016/j.cryobiol.2020.12.002.
pmid: 33279510 |
[44] |
Shu WH, Yang SH, Wei M, et al. Effects of sericin on oxidative stress and PI3K/AKT/mTOR signal pathway in cryopreserved mice ovarian tissue[J]. Cryobiology, 2023, 111:16-25. doi: 10.1016/j.cryobiol.2023.03.003.
pmid: 36934957 |
[45] | Li Y, Hu Y, Zhu S, et al. Protective Effects of Reduced Glutathione and Ulinastatin on Xeno-transplanted Human Ovarian Tissue Against Ischemia and Reperfusion Injury[J]. Cell Transplant, 2021,30:963689721997151. doi: 10.1177/0963689721997151. |
[46] | Olesen HØ, Pors SE, Jensen LB, et al. N-acetylcysteine protects ovarian follicles from ischemia-reperfusion injury in xenotransplanted human ovarian tissue[J]. Hum Reprod, 2021, 36(2):429-443. doi: 10.1093/humrep/deaa291. |
[47] | Dolmans MM, von Wolff M, Poirot C, et al. Transplantation of cryopreserved ovarian tissue in a series of 285 women: a review of five leading European centers[J]. Fertil Steril, 2021, 115(5):1102-1115. doi: 10.1016/j.fertnstert.2021.03.008. |
[48] | Lotz L, Bender-Liebenthron J, Dittrich R, et al. Determinants of transplantation success with cryopreserved ovarian tissue: data from 196 women of the FertiPROTEKT network[J]. Hum Reprod, 2022, 37(12):2787-2796. doi: 10.1093/humrep/deac225. |
[49] |
Erden M, Uyanik E, Demeestere I, et al. Perinatal outcomes of pregnancies following autologous cryopreserved ovarian tissue transplantation: a systematic review with pooled analysis[J]. Am J Obstet Gynecol, 2024, 231(5):480-489. doi: 10.1016/j.ajog.2024.04.012.
pmid: 38621483 |
[50] | Karavani G, Wasserzug-Pash P, Mordechai-Daniel T, et al. Age-Dependent in vitro Maturation Efficacy of Human Oocytes - Is There an Optimal Age?[J]. Front Cell Dev Biol, 2021,9:667682. doi: 10.3389/fcell.2021.667682. |
[51] | Dolmans MM, Amorim CA. FERTILITY PRESERVATION: Construction and use of artificial ovaries[J]. Reproduction, 2019, 158(5):F15-F25. doi: 10.1530/REP-18-0536. |
[52] | Zhang YY, Yang W, Zhang Y, et al. HucMSC-EVs Facilitate In Vitro Development of Maternally Aged Preantral Follicles and Oocytes[J]. Stem Cell Rev Rep, 2023, 19(5):1427-1448. doi: 10.1007/s12015-022-10495-w. |
[53] | Sönmezer M, Şükür YE, Saçıntı KG, et al. Safety of ovarian cryopreservation and transplantation in patients with acute leukemia: a case series[J]. Am J Obstet Gynecol, 2024, 230(1):79.e1-e10. doi: 10.1016/j.ajog.2023.08.032. |
[1] | 江楠, 赵晓丽, 李凯茜, 徐佳淇, 贾滢瑛, 夏天. 始基卵泡过度激活与卵巢储备功能减退的相关性及其机制[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 132-136. |
[2] | 张江琳, 袁海宁, 张云洁, 李恒兵, 苑丽华, 孙振高. 卵母细胞衰老机制的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 144-149. |
[3] | 卢凤娟, 王宇, 丛晶, 刘洋, 石百超, 关木馨, 张蓓, 吴效科. 中医药治疗痰湿型多囊卵巢综合征的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 161-165. |
[4] | 宋萌萌, 陈芳, 包香香, 田馨莉. PRMT5在妇科恶性肿瘤中的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 171-176. |
[5] | 杨华菊, 周颖, 郑雪婷, 郑杰. 双侧输卵管切除术后卵巢妊娠一例[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 21-25. |
[6] | 姚相宜, 刘培昊. 辅助生殖技术中双扳机应用的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 36-40. |
[7] | 徐强, 张曼丽, 腊晓琳. 线粒体功能异常与卵巢储备功能减退[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 54-58. |
[8] | 贾声晓, 孙淼, 匡洪影, 徐博雅. 微小RNA参与多囊卵巢综合征胰岛素抵抗的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 59-64. |
[9] | 石百超, 马红丽, 王宇, 朱梦一, 刘洋, 马颖琪, 吴效科. 生长分化因子15在妇产科疾病中的作用[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 78-83. |
[10] | 白若妍, 王炎强, 陈京霞. 绝经后女性宫内节育器相关卵巢脓肿术后继发脑脓肿一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 485-489. |
[11] | 李安琪, 朱梦一, 王宇, 高敬书, 吴效科. 丹参酮在多囊卵巢综合征治疗中的潜在价值及其机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 494-500. |
[12] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[13] | 乔新月, 陶爱琳, 冯晓玲, 陈璐. 多囊卵巢综合征伴焦虑、抑郁障碍的相关性研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 506-511. |
[14] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[15] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||