国际生殖健康/计划生育杂志 ›› 2025, Vol. 44 ›› Issue (2): 144-149.doi: 10.12280/gjszjk.20240519
张江琳, 袁海宁, 张云洁, 李恒兵, 苑丽华, 孙振高()
收稿日期:
2024-10-28
出版日期:
2025-03-15
发布日期:
2025-03-10
通讯作者:
孙振高,E-mail:基金资助:
ZHANG Jiang-lin, YUAN Hai-ning, ZHANG Yun-jie, LI Heng-bing, YUAN Li-hua, SUN Zhen-gao()
Received:
2024-10-28
Published:
2025-03-15
Online:
2025-03-10
Contact:
SUN Zhen-gao, E-mail: 摘要:
卵巢衰老是女性衰老的开始,不仅关系到女性生殖健康,也是当前社会低生育力的重要影响因素。目前针对女性生殖衰老的机制已经从多个层次进行了广泛的研究,包括细胞水平、分子水平、系统水平以及个体水平等方面。从线粒体功能、染色体、氧化应激、能量代谢以及免疫因素等方面综述卵母细胞衰老过程中所涉及的多种生物学机制,并探索针对女性生殖衰老靶向治疗的进展,以期为预防卵巢早衰甚至延缓生殖衰老提供重要思路。
张江琳, 袁海宁, 张云洁, 李恒兵, 苑丽华, 孙振高. 卵母细胞衰老机制的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 144-149.
ZHANG Jiang-lin, YUAN Hai-ning, ZHANG Yun-jie, LI Heng-bing, YUAN Li-hua, SUN Zhen-gao. Research Progress on the Mechanisms of Oocyte Aging[J]. Journal of International Reproductive Health/Family Planning, 2025, 44(2): 144-149.
[1] |
Adhikari D, Lee IW, Yuen WS, et al. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility[J]. Biol Reprod, 2022, 106(2):366-377. doi: 10.1093/biolre/ioac024.
pmid: 35094043 |
[2] | Joubert F, Puff N. Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems[J]. Membranes(Basel), 2021, 11(7):465. doi: 10.3390/membranes11070465. |
[3] | Berry BJ, Vodicková A, Müller-Eigner A, et al. Optogenetic rejuvenation of mitochondrial membrane potential extends C. elegans lifespan[J]. Nat Aging, 2023, 3(2):157-161. doi: 10.1038/s43587-022-00340-7. |
[4] | Zaib S, Hayyat A, Ali N, et al. Role of Mitochondrial Membrane Potential and Lactate Dehydrogenase A in Apoptosis[J]. Anticancer Agents Med Chem, 2022, 22(11):2048-2062. doi: 10.2174/1871520621666211126090906. |
[5] | Güçlü E, Çınar A, Dursun HG, et al. Tomentosin induces apoptosis in pancreatic cancer cells through increasing reactive oxygen species and decreasing mitochondrial membrane potential[J]. Toxicol In Vitro, 2022,84:105458. doi: 10.1016/j.tiv.2022.105458. |
[6] | Han X, Xing L, Hong Y, et al. Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence[J]. Cell Stem Cell, 2024, 31(5):694-716.e11. doi: 10.1016/j.stem.2024.03.015. |
[7] |
Zhang Y, Bai J, Cui Z, et al. Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging[J]. Nat Aging, 2023, 3(11):1372-1386. doi: 10.1038/s43587-023-00498-8.
pmid: 37845508 |
[8] |
May-Panloup P, Desquiret V, Morinière C, et al. Mitochondrial macro-haplogroup JT may play a protective role in ovarian ageing[J]. Mitochondrion, 2014, 18:1-6. doi: 10.1016/j.mito.2014.08.002.
pmid: 25132080 |
[9] | Liu BH, Xu CZ, Liu Y, et al. Mitochondrial quality control in human health and disease[J]. Mil Med Res, 2024, 11(1):32. doi: 10.1186/s40779-024-00536-5. |
[10] | Jin X, Wang K, Wang L, et al. RAB7 activity is required for the regulation of mitophagy in oocyte meiosis and oocyte quality control during ovarian aging[J]. Autophagy, 2022, 18(3):643-660. doi: 10.1080/15548627.2021.1946739. |
[11] | Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement[J]. Redox Biol, 2020,37:101674. doi: 10.1016/j.redox.2020.101674. |
[12] | Kobayashi H, Yoshimoto C, Matsubara S, et al. Altered Energy Metabolism, Mitochondrial Dysfunction, and Redox Imbalance Influencing Reproductive Performance in Granulosa Cells and Oocyte During Aging[J]. Reprod Sci, 2024, 31(4):906-916. doi: 10.1007/s43032-023-01394-7. |
[13] | Kirillova A, Smitz J, Sukhikh GT, et al. The Role of Mitochondria in Oocyte Maturation[J]. Cells, 2021, 10(9):2484. doi: 10.3390/cells10092484. |
[14] | 张楠, 张珏, 林戈. 哺乳动物卵母细胞的DNA损伤与修复研究进展[J]. 遗传, 2023, 45(5):379-394. doi: 10.16288/j.yczz.23-018. |
[15] | Zhao RZ, Jiang S, Zhang L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review)[J]. Int J Mol Med, 2019, 44(1):3-15. doi: 10.3892/ijmm.2019.4188. |
[16] | Hori YS, Kuno A, Hosoda R, et al. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress[J]. PLoS One, 2013, 8(9):e73875. doi: 10.1371/journal.pone.0073875. |
[17] | Vo KCT, Sato Y, Kawamura K. Improvement of oocyte quality through the SIRT signaling pathway[J]. Reprod Med Biol, 2023, 22(1):e12510. doi: 10.1002/rmb2.12510. |
[18] | Ming PF, Huang YY, Dong YL, et al. Regulation of LKB1-AMPKα-SIRT1 Signal Pathway in Lipid Metabolism in the Adipose Tissue of Dairy Cows[J]. Biotechnol Bull, 2019, 35(2):176-181. |
[19] | You Y, Liang W. SIRT1 and SIRT6: The role in aging-related diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(7): 166815. doi: 10.1016/j.bbadis.2023.166815. |
[20] | Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target[J]. Eur J Pharmacol, 2024,963:176155. doi: 10.1016/j.ejphar.2023.176155. |
[21] |
Wang B, Wang Y, Zhang J, et al. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis[J]. Arch Toxicol, 2023, 97 (6):1439-1451.doi: 10.1007/s00204-023-03476-6.
pmid: 37127681 |
[22] | Kobayashi H, Imanaka S. Recent progress in metabolomics for analyzing common infertility conditions that affect ovarian function[J]. Reprod Med Biol, 2024, 23(1):e12609. doi: 10.1002/rmb2.12609. |
[23] |
Ademowo OS, Dias H, Burton D, et al. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process?[J]. Biogerontology, 2017, 18(6):859-879. doi: 10.1007/s10522-017-9710-z.
pmid: 28540446 |
[24] | Li Y, Zhao T, Li J, et al. Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases[J]. J Immunol Res, 2022,2022:2233906. doi: 10.1155/2022/2233906. |
[25] | Park SU, Walsh L, Berkowitz KM. Mechanisms of ovarian aging[J]. Reproduction, 2021, 162(2):R19-R33. doi: 10.1530/REP-21-0022. |
[26] |
Lamb NE, Yu K, Shaffer J, et al. Association between maternal age and meiotic recombination for trisomy 21[J]. Am J Hum Genet, 2005, 76(1):91-99. doi: 10.1086/427266.
pmid: 15551222 |
[27] | Bai L, Li P, Xiang Y, et al. BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes[J]. Proc Natl Acad Sci U S A, 2024, 121(19):e2401386121. doi: 10.1073/pnas.2401386121. |
[28] | Liu C, Zuo W, Yan G, et al. Granulosa cell mevalonate pathway abnormalities contribute to oocyte meiotic defects and aneuploidy[J]. Nat Aging, 2023, 3(6):670-687. doi: 10.1038/s43587-023-00419-9. |
[29] | Takenouchi O, Sakakibara Y, Kitajima TS. Live chromosome identifying and tracking reveals size-based spatial pathway of meiotic errors in oocytes[J]. Science, 2024, 385(6706):eadn5529. doi: 10.1126/science.adn5529. |
[30] | Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies[J]. Med Rev(2021), 2022, 2(6):590-610. doi: 10.1515/mr-2022-0031. |
[31] | Haseeb MA, Bernys AC, Dickert EE, et al. An RNAi screen to identify proteins required for cohesion rejuvenation during meiotic prophase in Drosophila oocytes[J]. G3(Bethesda), 2024, 14(8):jkae123. doi: 10.1093/g3journal/jkae123. |
[32] | Wassmann K. Separase Control and Cohesin Cleavage in Oocytes: Should I Stay or Should I Go?[J]. Cells, 2022, 11(21):3399. doi: 10.3390/cells11213399. |
[33] | Mihalas BP, Pieper GH, Aboelenain M, et al. Age-dependent loss of cohesion protection in human oocytes[J]. Curr Biol, 2024, 34(1):117-131.e5. doi: 10.1016/j.cub.2023.11.061. |
[34] |
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes[J]. J Ovarian Res, 2024, 17(1):118. doi: 10.1186/s13048-024-01427-y.
pmid: 38822408 |
[35] | Smits M, Schomakers BV, van Weeghel M, et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction[J]. Hum Reprod, 2023, 38(11):2208-2220. doi: 10.1093/humrep/dead177. |
[36] | Covarrubias AJ, Perrone R, Grozio A, et al. NAD+ metabolism and its roles in cellular processes during ageing[J]. Nat Rev Mol Cell Biol, 2021, 22(2):119-141. doi: 10.1038/s41580-020-00313-x. |
[37] |
Fukamizu Y, Uchida Y, Shigekawa A, et al. Safety evaluation of β-nicotinamide mononucleotide oral administration in healthy adult men and women[J]. Sci Rep, 2022, 12(1):14442. doi: 10.1038/s41598-022-18272-y.
pmid: 36002548 |
[38] |
Johmura Y, Yamanaka T, Omori S, et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders[J]. Science, 2021, 371(6526):265-270. doi: 10.1126/science.abb5916.
pmid: 33446552 |
[39] | Li M, Wang Y, Wei X, et al. AMPK-PDZD8-GLS1 axis mediates calorie restriction-induced lifespan extension[J]. Cell Res, 2024, 34(11):806-809. doi: 10.1038/s41422-024-01021-3. |
[40] |
Silva J, Lima F, Souza A, et al. Interleukin-1β and TNF-α systems in ovarian follicles and their roles during follicular development, oocyte maturation and ovulation[J]. Zygote, 2020, 28(4):270-277. doi: 10.1017/S0967199420000222.
pmid: 32383419 |
[41] | Szeliga A, Calik-Ksepka A, Maciejewska-Jeske M, et al. Autoimmune Diseases in Patients with Premature Ovarian Insufficiency-Our Current State of Knowledge[J]. Int J Mol Sci, 2021, 22(5):2594. doi: 10.3390/ijms22052594. |
[42] |
Lliberos C, Liew SH, Zareie P, et al. Evaluation of inflammation and follicle depletion during ovarian ageing in mice[J]. Sci Rep, 2021, 11(1):278. doi: 10.1038/s41598-020-79488-4.
pmid: 33432051 |
[43] | Zhang L, Pitcher LE, Yousefzadeh MJ, et al. Cellular senescence: a key therapeutic target in aging and diseases[J]. J Clin Invest, 2022, 132(15):e158450. doi: 10.1172/JCI158450. |
[44] | Kang MH, Kim YJ, Cho MJ, et al. Mitigating Age-Related Ovarian Dysfunction with the Anti-Inflammatory Agent MIT-001[J]. Int J Mol Sci, 2023, 24(20):15158. doi: 10.3390/ijms242015158. |
[45] | Ali I, Padhiar AA, Wang T, et al. Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging[J]. Cells, 2022, 11(23):3713. doi: 10.3390/cells11233713. |
[46] | Li Z, Qi H, Li Z, et al. Research progress on the premature ovarian failure caused by cisplatin therapy[J]. Front Oncol, 2023,13:1276310. doi: 10.3389/fonc.2023.1276310. |
[47] | Wang Y, Pope I, Brennan-Craddock H, et al. A primary effect of palmitic acid on mouse oocytes is the disruption of the structure of the endoplasmic reticulum[J]. Reproduction, 2021, 163(1):45-56. doi: 10.1530/REP-21-0332. |
[1] | 戴凯妹, 张晶晶, 程世斌, 赵倩, 郝胜菊, 王兴. 2号染色体臂间倒位合并罗伯逊易位一家系的遗传学分析[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 125-127. |
[2] | 江楠, 赵晓丽, 李凯茜, 徐佳淇, 贾滢瑛, 夏天. 始基卵泡过度激活与卵巢储备功能减退的相关性及其机制[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 132-136. |
[3] | 王云凤, 侯海燕, 王建梅. 卵泡液中生长因子对卵母细胞发育和质量的影响[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 137-143. |
[4] | 王琳, 徐键. 卵巢组织玻璃化冷冻及移植技术的影响因素[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 47-53. |
[5] | 徐强, 张曼丽, 腊晓琳. 线粒体功能异常与卵巢储备功能减退[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 54-58. |
[6] | 何静, 王静, 蔺鹏武, 贾春暘, 朱韶华, 郝胜菊, 冯暄. 1q21.1远端微缺失/微重复综合征合并先天性心脏病4例临床及遗传学分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 462-466. |
[7] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[8] | 王俊育, 陈文莉, 吴荣泉, 江矞颖, 庄建龙. 染色体微阵列技术在孕期羊水过多遗传病因诊断中的应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 384-389. |
[9] | 陈新英, 黄婷婷, 曾书红, 江矞颖, 庄建龙. 一例胎儿淋巴水肿的家系基因遗传学分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 395-398. |
[10] | 江楠, 赵晓丽, 栾祖乾, 黄志云, 夏天. 高龄女性卵母细胞内氧化应激与非整倍体相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 415-419. |
[11] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[12] | 傅婉玉, 金莎汶, 江矞颖, 李燕青. 无创产前筛查技术在罕见常染色体三体及染色体拷贝数变异的临床效果分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 279-283. |
[13] | 曹媛媛, 贾赞慧, 张春苗. ZP1基因突变在空卵泡综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 127-131. |
[14] | 闻鑫, 赵晓丽, 栾祖乾, 夏天. 母胎界面免疫代谢微环境调节胚胎着床的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 138-143. |
[15] | 庄建龙, 许伟雄, 陈文莉, 江矞颖. 染色体微阵列分析在胎儿颅面畸形遗传病因诊断中的应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 95-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||