[1] |
Zhang M, Huang H, Lin N, et al. X-linked ichthyosis: Molecular findings in four pedigrees with inconspicuous clinical manifestations[J]. J Clin Lab Anal, 2020, 34(5):e23201. doi: 10.1002/jcla.23201.
|
[2] |
Esplin ED, Li B, Slavotinek A, et al. Nine patients with Xp22.31 microduplication, cognitive deficits, seizures, and talipes anomalies[J]. Am J Med Genet A, 2014, 164A(8):2097-2103. doi:10.1002/ajmg.a.36598.
pmid: 24800990
|
[3] |
Gubb S, Brcic L, Underwood J, et al. Medical and neurobehavioural phenotypes in male and female carriers of Xp22.31 duplications in the UK Biobank[J]. Hum Mol Genet, 2020, 29(17):2872-2881. doi: 10.1093/hmg/ddaa174.
pmid: 32766777
|
[4] |
Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)[J]. Genet Med, 2020, 22(2):245-257. doi: 10.1038/s41436-019-0686-8.
pmid: 31690835
|
[5] |
曾艳, 张建军. Xp22.3微缺失/微重复的研究进展[J]. 中华医学遗传学杂志, 2020, 37(5):584-587. doi: 10.3760/cma.j.issn.1003-9406.2020.05.022.
|
[6] |
白周现, 陈晨, 苏利沙, 等. 低深度全基因组测序拷贝数变异检测技术对缺失型X连锁鱼鳞病的检测效力及意义的分析研究[J]. 中华皮肤科杂志, 2019, 52(10):736-742. doi: 10.35541/cjd.20190197.
|
[7] |
蒋悦庭, 倪佳英, 郭沈睿, 等. 硫酸胆固醇的生理功能及其在相关疾病中的作用[J]. 上海交通大学学报(医学版), 2021, 41(3):371-375. doi: 10.3969/j.issn.1674-8115.2021.03.015.
|
[8] |
Hand JL, Runke CK, Hodge JC. The phenotype spectrum of X-linked ichthyosis identified by chromosomal microarray[J]. J Am Acad Dermatol, 2015, 72(4):617-627. doi: 10.1016/j.jaad.2014.12.020.
pmid: 25659225
|
[9] |
Gruber R, Janecke AR, Grabher D, et al. Evidence for genetic modifiers other than filaggrin mutations in X-linked ichthyosis[J]. J Dermatol Sci, 2010, 58(1):72-75. doi: 10.1016/j.jdermsci.2010.01.002.
pmid: 20149601
|
[10] |
Brcic L, Underwood JF, Kendall KM, et al. Medical and neurobehavioural phenotypes in carriers of X-linked ichthyosis-associated genetic deletions in the UK Biobank[J]. J Med Genet, 2020, 57(10):692-698. doi: 10.1136/jmedgenet-2019-106676.
pmid: 32139392
|
[11] |
Myers KA, Simard-Tremblay E, Saint-Martin C. X-Linked Familial Focal Epilepsy Associated With Xp22.31 Deletion[J]. Pediatr Neurol, 2020, 108:113-116. doi: 10.1016/j.pediatrneurol.2020.02.008.
pmid: 32299744
|
[12] |
Wren GH, Flanagan J, Underwood J, et al. Memory, mood and associated neuroanatomy in individuals with steroid sulphatase deficiency (X-linked ichthyosis)[J]. Genes Brain Behav, 2024, 23(3):e12893. doi: 10.1111/gbb.12893.
|
[13] |
Xie W, Zhou H, Zhou L, et al. Clinical features and genetic analysis of two Chinese families with X-linked ichthyosis[J]. J Int Med Res, 2020, 48(10):300060520962292. doi: 10.1177/0300060520962292.
|
[14] |
徐两蒲, 张敏, 黄海龙, 等. X-性连锁鱼鳞病两家系基因检测及产前诊断[J]. 中华围产医学杂志, 2018, 21(5):293-300. doi: 10.3760/cma.j.issn.1007-9408.2018.05.004.
|
[15] |
Schierz I, Giuffrè M, Cimador M, et al. Hypertrophic pyloric stenosis masked by kidney failure in a male infant with a contiguous gene deletion syndrome at Xp22.31 involving the steroid sulfatase gene: case report[J]. Ital J Pediatr, 2022, 48(1):19. doi: 10.1186/s13052-022-01218-5.
pmid: 35115028
|
[16] |
Georgopoulos NA, Koika V, Galli-Tsinopoulou A, et al. Renal dysgenesis and KAL1 gene defects in patients with sporadic Kallmann syndrome[J]. Fertil Steril, 2007, 88(5):1311-1317. doi:10.1016/j.fertnstert.2006.12.044.
pmid: 17603054
|
[17] |
Dreyer FE, Abdulrahman GO, Waring G, et al. Placental steroid sulphatase deficiency: an approach to antenatal care and delivery[J]. Ann Saudi Med, 2018, 38(6):445-449. doi: 10.5144/0256-4947.2018.445.
|
[18] |
刘红彦, 李茜, 黄佳, 等. 产前筛查孕妇游离雌三醇水平低下对X连锁鱼鳞病患儿的预警作用[J]. 中华妇产科杂志, 2022, 57(6):407-412. doi: 10.3760/cma.j.cn112141-20220125-00043.
|
[19] |
Liu P, Erez A, Nagamani SC, et al. Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications[J]. Hum Mol Genet, 2011, 20(10):1975-1988. doi: 10.1093/hmg/ddr078.
pmid: 21355048
|
[20] |
Pavone P, Corsello G, Marino S, et al. Microcephaly/Trigonocephaly, Intellectual Disability, Autism Spectrum Disorder, and Atypical Dysmorphic Features in a Boy with Xp22.31 Duplication[J]. Mol Syndromol, 2019, 9(5):253-258. doi: 10.1159/000493174.
pmid: 30733660
|
[21] |
Zhuang J, Wang Y, Zeng S, et al. A prenatal diagnosis and genetics study of five pedigrees in the Chinese population with Xp22.31 microduplication[J]. Mol Cytogenet, 2019,12:50. doi: 10.1186/s13039-019-0461-1.
|
[22] |
吴海燕, 黄柳萍, 罗小芳, 等. 应用高通量测序技术产前诊断8例Xp22.31微重复分析[J]. 中国优生与遗传杂志, 2020, 28(1):29-30.
|
[23] |
Hu H, Huang Y, Hou R, et al. Xp22.31 copy number variations in 87 fetuses: refined genotype-phenotype correlations by prenatal and postnatal follow-up[J]. BMC Med Genomics, 2023, 16(1):69. doi: 10.1186/s12920-023-01493-z.
pmid: 37013593
|
[24] |
Shaikh TH, Gai X, Perin JC, et al. High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications[J]. Genome Res, 2009, 19(9):1682-1690. doi: 10.1101/gr.083501.108.
pmid: 19592680
|
[25] |
Qiao Y, Bagheri H, Tang F, et al. Exome sequencing identified a de novo mutation of PURA gene in a patient with familial Xp22.31 microduplication[J]. Eur J Med Genet, 2019, 62(2):103-108. doi: 10.1016/j.ejmg.2018.06.010.
pmid: 29908350
|