国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (2): 142-146.doi: 10.12280/gjszjk.20200254
收稿日期:
2020-05-11
出版日期:
2021-03-15
发布日期:
2021-03-24
通讯作者:
杨晓葵
E-mail:xiaokuiyang2012@163.com
基金资助:
Received:
2020-05-11
Published:
2021-03-15
Online:
2021-03-24
Contact:
YANG Xiao-kui
E-mail:xiaokuiyang2012@163.com
摘要:
过氧化物酶体增殖物激活受体γ共激活因子1α(peroxisome proliferator-activated receptor gamma coactivator 1 alpha,PGC-1α)属于人体内一种重要的核转录辅助激活因子,是线粒体生成的关键调节因子,通过与核受体及转录因子的相互作用参与线粒体的生物合成、适应性产热、能量代谢、细胞凋亡、细胞信号转导和肿瘤发生等多种生物学过程。近年来PGC-1α在卵巢中的作用备受关注,越来越多的研究表明PGC-1α可通过参与卵泡发育、卵泡闭锁、调控卵巢激素合成与分泌等多种途径影响卵巢功能。PGC-1α的表达和功能异常与卵巢功能减退、多囊卵巢综合征和卵巢癌等病理反应相关。随着研究不断地深入,PGC-1α通过调控细胞信号转导对卵巢功能的调控机制逐渐被揭示。本文就PGC-1α在卵巢中的作用及相关研究进展进行综述,为卵巢功能异常及相关疾病的临床诊治提供参考。
葛婷, 杨晓葵. PGC-1α与卵巢功能及相关研究进展[J]. 国际生殖健康/计划生育, 2021, 40(2): 142-146.
GE Ting, YANG Xiao-kui. Research Progress on PGC-1α in Ovary[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(2): 142-146.
[1] |
Rius-Pérez S, Torres-Cuevas I, Millán I, et al. PGC-1α,Inflammation,and Oxidative Stress: An Integrative View in Metabolism[J]. Oxid Med Cell Longev, 2020,2020:1452696. doi: 10.1155/2020/1452696.
doi: 10.1155/2020/1452696 URL pmid: 32215168 |
[2] |
Martínez-Redondo V, Pettersson AT, Ruas JL. The hitchhiker′s guide to PGC-1α isoform structure and biological functions[J]. Diabetologia, 2015,58(9):1969-1977. doi: 10.1007/s00125-015-3671-z.
doi: 10.1007/s00125-015-3671-z URL pmid: 26109214 |
[3] |
Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond[J]. FEBS J, 2015,282(4):647-672. doi: 10.1111/febs.13175.
doi: 10.1111/febs.13175 URL pmid: 25495651 |
[4] |
Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, et al. The Role of PGC-1α and Mitochondrial Biogenesis in Kidney Diseases[J]. Biomolecules, 2020,10(2):347. doi: 10.3390/biom10020347.
doi: 10.3390/biom10020347 URL |
[5] |
Cheng CF, Ku HC, Lin H. PGC-1α as a Pivotal Factor in Lipid and Metabolic Regulation[J]. Int J Mol Sci, 2018,19(11):3447. doi: 10.3390/ijms19113447.
doi: 10.3390/ijms19113447 URL |
[6] |
Yang S, Loro E, Wada S, et al. Functional effects of muscle PGC-1alpha in aged animals[J]. Skelet Muscle, 2020,10(1):14. doi: 10.1186/s13395-020-00231-8.
doi: 10.1186/s13395-020-00231-8 URL pmid: 32375875 |
[7] |
Li G, Jiang Q, Xu K. CREB family: A significant role in liver fibrosis[J]. Biochimie, 2019,163:94-100. doi: 10.1016/j.biochi.2019.05.014.
doi: 10.1016/j.biochi.2019.05.014 URL pmid: 31112743 |
[8] |
Dankel SN, Hoang T, Flågeng MH, et al. cAMP-mediated regulation of HNF-4alpha depends on the level of coactivator PGC-1alpha[J]. Biochim Biophys Acta, 2010,1803(9):1013-1019. doi: 10.1016/j.bbamcr.2010.05.008.
doi: 10.1016/j.bbamcr.2010.05.008 URL pmid: 20670916 |
[9] |
Klinge CM. Estrogenic control of mitochondrial function[J]. Redox Biol, 2020,31:101435. doi: 10.1016/j.redox.2020.101435.
doi: 10.1016/j.redox.2020.101435 URL pmid: 32001259 |
[10] |
Lloret A, Beal MF. PGC-1α, Sirtuins and PARPs in Huntington′s Disease and Other Neurodegenerative Conditions: NAD+ to Rule Them All[J]. Neurochem Res, 2019,44(10):2423-2434. doi: 10.1007/s11064-019-02809-1.
doi: 10.1007/s11064-019-02809-1 URL pmid: 31065944 |
[11] |
Li L, Pan R, Li R, et al. Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity: intact adipocytokine signaling is required[J]. Diabetes, 2011,60(1):157-167. doi: 10.2337/db10-0331.
doi: 10.2337/db10-0331 URL |
[12] |
Jäger S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha[J]. Proc Natl Acad Sci U S A, 2007,104(29):12017-12022. doi: 10.1073/pnas.0705070104.
doi: 10.1073/pnas.0705070104 URL pmid: 17609368 |
[13] | Ma L, Wang R, Wang H, et al. Long-term caloric restriction activates the myocardial SIRT1/AMPK/PGC-1α pathway in C57BL/6J male mice[J]. Food Nutr Res, 2020,64:3668. doi: 10.29219/fnr.v64.3668. |
[14] |
Martínez-Limón A, Joaquin M, Caballero M, et al. The p38 Pathway: From Biology to Cancer Therapy[J]. Int J Mol Sci, 2020,21(6):1913. doi: 10.3390/ijms21061913.
doi: 10.3390/ijms21061913 URL |
[15] |
Kang C, Chung E, Diffee G, et al. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α[J]. Exp Gerontol, 2013,48(11):1343-1350. doi: 10.1016/j.exger.2013.08.004.
doi: 10.1016/j.exger.2013.08.004 URL |
[16] |
Hong T, Ning J, Yang X, et al. Fine-tuned regulation of the PGC-1α gene transcription by different intracellular signaling pathways[J]. Am J Physiol Endocrinol Metab, 2011,300(3):E500-E507. doi: 10.1152/ajpendo.00225.2010.
doi: 10.1152/ajpendo.00225.2010 URL pmid: 21156859 |
[17] |
Wang T, Zhang M, Jiang Z, et al. Mitochondrial dysfunction and ovarian aging[J]. Am J Reprod Immunol. 2017,77(5):e12651. doi: 10.1111/aji.12651.
doi: 10.1111/aji.12651 URL |
[18] |
Zhang G, Wan Y, Zhang Y, et al. Expression of Mitochondria-Associated Genes (PPARGC1A, NRF-1,BCL-2 and BAX) in Follicular Development and Atresia of Goat Ovaries[J]. Reprod Domest Anim, 2015,50(3):465-473. doi: 10.1111/rda.12514.
doi: 10.1111/rda.12514 URL pmid: 25779891 |
[19] |
Zhou Z, Wan Y, Zhang Y, et al. Follicular development and expression of nuclear respiratory factor-1 and peroxisome proliferator-activated receptor γ coactivator-1 alpha in ovaries of fetal and neonatal doelings[J]. J Anim Sci, 2012,90(11):3752-3761. doi: 10.2527/jas.2011-4971.
doi: 10.2527/jas.2011-4971 URL |
[20] |
Zhang GM, Deng MT, Zhang YL, et al. Effect of PGC-1α overexpression or silencing on mitochondrial apoptosis of goat luteinized granulosa cells[J]. J Bioenerg Biomembr, 2016,48(5):493-507. doi: 10.1007/s10863-016-9684-6.
URL pmid: 27896503 |
[21] | Boucret L, Chao de la Barca JM, Morinière C, et al. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells[J]. Hum Reprod, 2015,30(7):1653-1664. doi: 10.1093/humrep/dev114. |
[22] | Młynarczuk J, Rękawiecki R. The role of the orphan receptor SF-1 in the development and function of the ovary[J]. Reprod Biol, 2010,10(3):177-193. |
[23] |
Meinsohn MC, Smith OE, Bertolin K, et al. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction[J]. Physiol Rev, 2019,99(2):1249-1279. doi: 10.1152/physrev.00019.2018.
URL pmid: 30810078 |
[24] | Yazawa T, Inaoka Y, Okada R, et al. PPAR-gamma coactivator-1alpha regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1[J]. Mol Endocrinol, 2010,24(3):485-496. doi: 10.1210/me.2009-0352. |
[25] |
Liu Y, Zhai J, Chen J, et al. PGC-1α protects against oxidized low-density lipoprotein and luteinizing hormone-induced granulosa cells injury through ROS-p38 pathway[J]. Hum Cell, 2019,32(3):285-296. doi: 10.1007/s13577-019-00252-6.
URL pmid: 30993568 |
[26] | Bednarska S, Siejka A. The pathogenesis and treatment of polycystic ovary syndrome: What′s new?[J]. Adv Clin Exp Med, 2017,26(2):359-367. doi: 10.17219/acem/59380. |
[27] | Bannigida DM, Nayak BS, Vijayaraghavan R. Insulin resistance and oxidative marker in women with PCOS[J]. Arch Physiol Biochem, 2020,126(2):183-186. doi: 10.1080/13813455. |
[28] |
Enli Y, Fenkci SM, Fenkci V, et al. Serum Fetuin-A levels, insulin resistance and oxidative stress in women with polycystic ovary syndrome[J]. Gynecol Endocrinol, 2013,29(12):1036-1039. doi: 10.3109/09513590.
URL pmid: 23961784 |
[29] |
Özer A, Bakacak M, Kıran H, et al. Increased oxidative stress is associated with insulin resistance and infertility in polycystic ovary syndrome[J]. Ginekol Pol, 2016,87(11):733-738. doi: 10.5603/GP.2016.0079.
URL pmid: 27958630 |
[30] | Reddy TV, Govatati S, Deenadayal M, et al. Polymorphisms in the TFAM and PGC1-α genes and their association with polycystic ovary syndrome among South Indian women[J]. Gene, 2018,641:129-136. doi: 10.1016/j.gene.2017.10.010. |
[31] | 巴一, 张燕, 张辰宇. 过氧化物酶体增殖物活化受体γ共激活因子1α对人卵巢癌细胞的凋亡作用[J]. 中华医学杂志, 2007,87(20):1430-1433. doi: 10.3760/j:issn:0376-2491.2007.20.019. |
[32] |
Zhang Y, Ba Y, Liu C, et al. PGC-1alpha induces apoptosis in human epithelial ovarian cancer cells through a PPARgamma-dependent pathway[J]. Cell Res, 2007,17(4):363-373. doi: 10.1038/cr.2007.11.
URL pmid: 17372612 |
[33] |
Guo T, Li B, Gu C, et al. PGC-1α inhibits polyamine metabolism in Cyclin E1-driven ovarian cancer[J]. Cancer Med, 2019,8(18):7754-7761. doi: 10.1002/cam4.2637.
doi: 10.1002/cam4.2637 URL pmid: 31657115 |
[1] | 白若妍, 王炎强, 陈京霞. 绝经后女性宫内节育器相关卵巢脓肿术后继发脑脓肿一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 485-489. |
[2] | 李安琪, 朱梦一, 王宇, 高敬书, 吴效科. 丹参酮在多囊卵巢综合征治疗中的潜在价值及其机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 494-500. |
[3] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[4] | 乔新月, 陶爱琳, 冯晓玲, 陈璐. 多囊卵巢综合征伴焦虑、抑郁障碍的相关性研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 506-511. |
[5] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[6] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[7] | 肖楠, 李永程, 姚义鸣, 孙红文, 姚汝强, 陈泳君, 殷宇辰, 罗海宁. 卵巢微环境内邻苯二甲酸酯暴露与炎性因子水平的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 353-360. |
[8] | 高征, 李梦元, 李博, 梁婧翘, 张雅冬, 许昕. 中药复方干预肥胖型多囊卵巢综合征糖脂代谢异常的Meta分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 368-377. |
[9] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[10] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[11] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[12] | 徐晓燕, 王笑璇. 卵巢妊娠破裂三例诊疗体会[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 309-312. |
[13] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[14] | 王冬雪, 包莉莉, 刘珊, 杨波. 改良灵活拮抗剂方案对卵巢功能正常女性COH结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 185-189. |
[15] | 刘书杰, 李明泽, 张海燕. 卵巢中-低分化支持-间质细胞瘤一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 207-211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||