国际生殖健康/计划生育杂志 ›› 2024, Vol. 43 ›› Issue (2): 132-137.doi: 10.12280/gjszjk.20230438
收稿日期:
2023-10-27
出版日期:
2024-03-15
发布日期:
2024-03-22
通讯作者:
孟昱时
E-mail:mengyushi0102@163.com
YE Lin, HOU Zhi-jin, MENG Yu-shi()
Received:
2023-10-27
Published:
2024-03-15
Online:
2024-03-22
Contact:
MENG Yu-shi
E-mail:mengyushi0102@163.com
摘要:
西罗莫司作为常用的免疫抑制剂,现广泛用于预防器官移植受者发生免疫排斥反应。随着医学研究的不断发展,已证明西罗莫司在女性生殖过程中具有免疫调节作用。西罗莫司通过抑制哺乳动物雷帕霉素靶蛋白发挥免疫调节功能,可能会改善合并反复种植失败、复发性流产、子宫内膜异位症、慢性子宫内膜炎及多囊卵巢综合征等生殖系统疾病患者的生殖免疫状态。西罗莫司还可预防辅助生殖治疗过程中卵巢过度刺激综合征的发生,提高母胎界面免疫状态异常患者的胚胎种植率和临床妊娠率,实现更好的妊娠结局。综述西罗莫司在女性生殖相关疾病中的作用机制、研究现状及安全性。
叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137.
YE Lin, HOU Zhi-jin, MENG Yu-shi. Research Progress of Sirolimus in the Field of Reproduction[J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 132-137.
[1] |
Ejzenberg D, Andraus W, Baratelli Carelli Mendes LR, et al. Livebirth after uterus transplantation from a deceased donor in a recipient with uterine infertility[J]. Lancet, 2019, 392(10165):2697-2704. doi: 10.1016/S0140-6736(18)31766-5.
pmid: 30527853 |
[2] | Wang M, Jin L, Shi J, et al. Estradiol on trigger day: Irrelevant to live birth rates of fresh cycles but positively associated with cumulative live birth rates[J]. Int J Gynaecol Obstet, 2023, 163(2):627-638. doi: 10.1002/ijgo.14887. |
[3] |
Von Woon E, Greer O, Shah N, et al. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis[J]. Hum Reprod Update, 2022, 28(4):548-582. doi: 10.1093/humupd/dmac006.
pmid: 35265977 |
[4] | Ahmadi M, Abdolmohamadi-Vahid S, Ghaebi M, et al. Sirolimus as a new drug to treat RIF patients with elevated Th17/Treg ratio: A double-blind, phase Ⅱ randomized clinical trial[J]. Int Immunopharmacol, 2019,74:105730. doi: 10.1016/j.intimp.2019.105730. |
[5] | Pantos K, Grigoriadis S, Maziotis E, et al. The Role of Interleukins in Recurrent Implantation Failure: A Comprehensive Review of the Literature[J]. Int J Mol Sci, 2022, 23(4):2198. doi: 10.3390/ijms 23042198. |
[6] |
Moldenhauer LM, Hull ML, Foyle KL, et al. Immune-Metabolic Interactions and T Cell Tolerance in Pregnancy[J]. J Immunol, 2022, 209(8):1426-1436. doi: 10.4049/jimmunol.2200362.
pmid: 36192117 |
[7] |
Coomarasamy A, Dhillon-Smith RK, Papadopoulou A, et al. Recurrent miscarriage: evidence to accelerate action[J]. Lancet, 2021, 397(10285):1675-1682. doi: 10.1016/S0140-6736(21)00681-4.
pmid: 33915096 |
[8] | Huang N, Chi H, Qiao J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases[J]. Front Immunol, 2020,11:1023. doi: 10.3389/fimmu.2020.01023. |
[9] |
Li L, Ren AA, Gao S, et al. mTORC1 Inhibitor Rapamycin Inhibits Growth of Cerebral Cavernous Malformation in Adult Mice[J]. Stroke, 2023, 54(11):2906-2917. doi: 10.1161/STROKEAHA.123.044108.
pmid: 37746705 |
[10] | Tsuji-Tamura K, Sato M, Fujita M, et al. The role of PI3K/Akt/mTOR signaling in dose-dependent biphasic effects of glycine on vascular development[J]. Biochem Biophys Res Commun, 2020, 529(3):596-602. doi: 10.1016/j.bbrc.2020.06.085. |
[11] |
Parhizkar F, Motavalli-Khiavi R, Aghebati-Maleki L, et al. The Impact of New Immunological Therapeutic Strategies on Recurrent Miscarriage and Recurrent Implantation Failure[J]. Immunol Lett, 2021, 236:20-30. doi: 10.1016/j.imlet.2021.05.008.
pmid: 34090942 |
[12] |
Royster GD, Harris JC, Nelson A, et al. Rapamycin Corrects T Regulatory Cell Depletion and Improves Embryo Implantation and Live Birth Rates in a Murine Model[J]. Reprod Sci, 2019, 26(12):1545-1556. doi: 10.1177/1933719119828110.
pmid: 30782087 |
[13] | Makrigiannakis A, Makrygiannakis F, Vrekoussis T. Approaches to Improve Endometrial Receptivity in Case of Repeated Implantation Failures[J]. Front Cell Dev Biol, 2021,9:613277. doi: 10.3389/fcell.2021.613277. |
[14] | Nakagawa K, Kwak-Kim J, Ota K, et al. Immunosuppression with tacrolimus improved reproductive outcome of women with repeated implantation failure and elevated peripheral blood TH1/TH2 cell ratios[J]. Am J Reprod Immunol, 2015, 73(4):353-361. doi: 10.1111/aji.12338. |
[15] | Wang C, Guan D, Li R, et al. Comparative efficacies of different immunotherapy regimens in recurrent implantation failure: A systematic review and network meta-analysis[J]. J Reprod Immunol, 2021,148:103429. doi: 10.1016/j.jri.2021.103429. |
[16] | Wang X, Geng S, Meng J, et al. Foxp3-mediated blockage of ryanodine receptor 2 underlies contact-based suppression by regulatory T cells[J]. J Clin Invest, 2023, 133(24):e163470. doi: 10.1172/JCI163470. |
[17] | Wang WJ, Zhang H, Chen ZQ, et al. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis[J]. Reprod Biol Endocrinol, 2019, 17(1):2. doi: 10.1186/s12958-018-0444-9. |
[18] |
Busnelli A, Somigliana E, Cirillo F, et al. Efficacy of therapies and interventions for repeated embryo implantation failure: a systematic review and meta-analysis[J]. Sci Rep, 2021, 11(1):1747. doi: 10.1038/s41598-021-81439-6.
pmid: 33462292 |
[19] | Luo L, Zeng X, Huang Z, et al. Reduced frequency and functional defects of CD4+CD25highCD127low/- regulatory T cells in patients with unexplained recurrent spontaneous abortion[J]. Reprod Biol Endocrinol, 2020, 18(1):62. doi: 10.1186/s12958-020-00619-7. |
[20] | Lu H, Yang HL, Zhou WJ, et al. Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence[J]. Autophagy, 2021, 17(9):2511-2527. doi: 10.1080/15548627.2020.1833515. |
[21] | Mohammadi S, Abdollahi E, Nezamnia M, et al. Adoptive transfer of Tregs: A novel strategy for cell-based immunotherapy in spontaneous abortion: Lessons from experimental models[J]. Int Immunopharmacol, 2021,90:107195. doi: 10.1016/j.intimp.2020.107195. |
[22] | Walker ER, McGrane M, Aplin JD, et al. A systematic review of transcriptomic studies of the human endometrium reveals inconsistently reported differentially expressed genes[J]. Reprod Fertil, 2023, 4(3):e220115. doi: 10.1530/RAF-22-0115. |
[23] | Madanes D, Bilotas MA, Bastón JI, et al. PI3K/AKT pathway is altered in the endometriosis patient′s endometrium and presents differences according to severity stage[J]. Gynecol Endocrinol, 2020, 36(5):436-440. doi: 10.1080/09513590.2019.1680627. |
[24] | Driva TS, Schatz C, Sobočan M, et al. The Role of mTOR and eIF Signaling in Benign Endometrial Diseases[J]. Int J Mol Sci, 2022, 23(7):3416. doi: 10.3390/ijms23073416. |
[25] | Guo Z, Yu Q. Role of mTOR Signaling in Female Reproduction[J]. Front Endocrinol(Lausanne), 2019,10:692. doi: 10.3389/fendo.2019.00692. |
[26] |
Cuesta R, Gritsenko MA, Petyuk VA, et al. Phosphoproteome Analysis Reveals Estrogen-ER Pathway as a Modulator of mTOR Activity Via DEPTOR[J]. Mol Cell Proteomics, 2019, 18(8):1607-1618. doi: 10.1074/mcp.RA119.001506.
pmid: 31189691 |
[27] | Zhang X, Li S, Chen Z, et al. Tanshinone ⅡA participates in the treatment of endometriosis by regulating adhesion, invasion, angiogenesis and inhibition of PI3K/Akt/mTOR signaling pathway[J]. Mol Med Rep, 2023, 28(5):221. doi: 10.3892/mmr.2023.13108. |
[28] | Alam MM, Fermin JM, Knackstedt M, et al. Everolimus downregulates STAT3/HIF-1α/VEGF pathway to inhibit angiogenesis and lymphangiogenesis in TP53 mutant head and neck squamous cell carcinoma (HNSCC)[J]. Oncotarget, 2023, 14:85-95. doi: 10.18632/oncotarget.28355. |
[29] |
Choi J, Jo M, Lee E, et al. Involvement of endoplasmic reticulum stress in regulation of endometrial stromal cell invasiveness: possible role in pathogenesis of endometriosis[J]. Mol Hum Reprod, 2019, 25(3):101-110. doi: 10.1093/molehr/gaz002.
pmid: 30657961 |
[30] | Sun YZ, Liu L, Cai N, et al. Anti-angiogenic effect of rapamycin in mouse oxygen-induced retinopathy is mediated through suppression of HIF-1alpha/VEGF pathway[J]. Int J Clin Exp Pathol, 2017, 10(10):10167-10175. |
[31] |
Yang Y, Xia J, Yang Z, et al. The abnormal level of HSP70 is related to Treg/Th17 imbalance in PCOS patients[J]. J Ovarian Res, 2021, 14(1):155. doi: 10.1186/s13048-021-00867-0.
pmid: 34781996 |
[32] |
Li T, Dong G, Kang Y, et al. Increased homocysteine regulated by androgen activates autophagy by suppressing the mammalian target of rapamycin pathway in the granulosa cells of polycystic ovary syndrome mice[J]. Bioengineered, 2022, 13(4):10875-10888. doi: 10.1080/21655979.2022.2066608.
pmid: 35485387 |
[33] | Liu J, Zhao Y, Chen L, et al. Role of metformin in functional endometrial hyperplasia and polycystic ovary syndrome involves the regulation of MEG3/miR-223/GLUT4 and SNHG20/miR-4486/GLUT4 signaling[J]. Mol Med Rep, 2022, 26(1):218. doi: 10.3892/mmr.2022.12734. |
[34] | Estienne A, Bongrani A, Ramé C, et al. Energy sensors and reproductive hypothalamo-pituitary ovarian axis (HPO) in female mammals: Role of mTOR (mammalian target of rapamycin), AMPK (AMP-activated protein kinase) and SIRT1 (Sirtuin 1)[J]. Mol Cell Endocrinol, 2021,521:111113. doi: 10.1016/j.mce.2020.111113. |
[35] | Zhang S, Ma Y, Zuo Q, et al. Repeated controlled ovarian stimulation-induced ovarian and uterine damage in mice through the PI3K/AKT signaling pathway[J]. Hum Cell, 2023, 36(1):234-243. doi: 10.1007/s13577-022-00829-8. |
[36] | Wang H, Chen W, Huang Y, et al. EGR1 Promotes Ovarian Hyperstimulation Syndrome Through Upregulation of SOX9 Expression[J]. Cell Transplant, 2023,32:9636897231193073. doi: 10.1177/09636897231193073. |
[37] |
Liu W, Zhang C, Wang L, et al. Successful reversal of ovarian hyperstimulation syndrome in a mouse model by rapamycin, an mTOR pathway inhibitor[J]. Mol Hum Reprod, 2019, 25(8):445-457. doi: 10.1093/molehr/gaz033.
pmid: 31329230 |
[38] | Andreescu M. The impact of the use of immunosuppressive treatment after an embryo transfer in increasing the rate of live birth[J]. Front Med(Lausanne), 2023,10:1167876. doi: 10.3389/fmed.2023.1167876. |
[1] | 宋丹妮, 朱蓉, 蒲丛珊, 王义婷, 姜微微, 胡双, 单春剑. 辅助生殖技术助孕患者痛苦表露的潜在剖面分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 441-446. |
[2] | 苗贺瑱, 刘佳佳, 闫宇, 马国霞, 王晓慧. 一例罕见的宫颈子宫内膜异位症[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 475-478. |
[3] | 史红丽, 许莉欣, 廉红梅. 绝经后妇女原发性子宫内膜卵黄囊瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 479-484. |
[4] | 李安琪, 朱梦一, 王宇, 高敬书, 吴效科. 丹参酮在多囊卵巢综合征治疗中的潜在价值及其机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 494-500. |
[5] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[6] | 乔新月, 陶爱琳, 冯晓玲, 陈璐. 多囊卵巢综合征伴焦虑、抑郁障碍的相关性研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 506-511. |
[7] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[8] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[9] | 宫政, 王聪, 宋佳怡, 夏天. 基于数据挖掘探讨中医药在辅助生殖技术中的分期应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 361-367. |
[10] | 高征, 李梦元, 李博, 梁婧翘, 张雅冬, 许昕. 中药复方干预肥胖型多囊卵巢综合征糖脂代谢异常的Meta分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 368-377. |
[11] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[12] | 罗莎莎, 王德婧. 冻融胚胎移植妊娠结局相关影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 420-424. |
[13] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[14] | 谢娱新, 王瑞雪, 陈梦娜, 储继军. 膜联蛋白A家族在母胎界面及不良妊娠中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 430-434. |
[15] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||