国际生殖健康/计划生育杂志 ›› 2024, Vol. 43 ›› Issue (6): 494-500.doi: 10.12280/gjszjk.20240275
收稿日期:
2024-06-06
出版日期:
2024-11-15
发布日期:
2024-11-12
通讯作者:
吴效科,E-mail:xiaokewu2002@vip.sina.com
基金资助:
LI An-qi, ZHU Meng-yi, WANG Yu, GAO Jing-shu, WU Xiao-ke()
Received:
2024-06-06
Published:
2024-11-15
Online:
2024-11-12
Contact:
WU Xiao-ke, E-mail: xiaokewu2002@vip.sina.com
摘要:
丹参酮是从中药丹参中提取的一类化合物,因其抗炎、抗氧化及抗癌特性而备受关注。近期研究表明,丹参酮在多囊卵巢综合征(polycystic ovary syndrome,PCOS)的治疗中具有潜在价值。丹参酮可能通过调节激素平衡、增强胰岛素敏感性以及减轻炎症反应等机制,有效改善PCOS患者的胰岛素抵抗、脂质代谢异常、高雄激素血症和慢性低度炎症等症状。此外,丹参酮还能改善PCOS患者排卵障碍和卵巢功能不全。综述近年来丹参酮在PCOS治疗领域的研究进展,以期为PCOS临床实践和新药研发提供理论参考。
李安琪, 朱梦一, 王宇, 高敬书, 吴效科. 丹参酮在多囊卵巢综合征治疗中的潜在价值及其机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 494-500.
LI An-qi, ZHU Meng-yi, WANG Yu, GAO Jing-shu, WU Xiao-ke. Potential Application of Tanshinone in the Treatment of Polycystic Ovary Syndrome and Mechanism[J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 494-500.
[1] |
Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment[J]. Nat Rev Endocrinol, 2018, 14(5):270-284. doi: 10.1038/nrendo.2018.24.
pmid: 29569621 |
[2] |
Bril F, Ezeh U, Amiri M, et al. Adipose Tissue Dysfunction in Polycystic Ovary Syndrome[J]. J Clin Endocrinol Metab, 2023, 109(1):10-24. doi: 10.1210/clinem/dgad356.
pmid: 37329216 |
[3] |
Huang Z, Xu T, Liu C, et al. Correlation between ovarian follicular development and Hippo pathway in polycystic ovary syndrome[J]. J Ovarian Res, 2024, 17(1):14. doi: 10.1186/s13048-023-01305-z.
pmid: 38216976 |
[4] | Ayvazyan A, Deutsch L, Zidorn C, et al. Cytotoxic diterpenoids from Salvia glutinosa and comparison with the tanshinone profile of danshen (Salvia miltiorrhiza)[J]. Front Plant Sci, 2023,14:1269710. doi: 10.3389/fpls.2023.1269710. |
[5] |
Shen W, Zhang Y, Li W, et al. Effects of tanshinone on hyperandrogenism and the quality of life in women with polycystic ovary syndrome: protocol of a double-blind, placebo-controlled, randomised trial[J]. BMJ Open, 2013, 3(10):e003646. doi: 10.1136/bmjopen-2013-003646.
pmid: 24163207 |
[6] | Tong C, Wu Y, Zhang L, et al. Insulin resistance, autophagy and apoptosis in patients with polycystic ovary syndrome: Association with PI3K signaling pathway[J]. Front Endocrinol(Lausanne), 2022, 13:1091147. doi: 10.3389/fendo.2022.1091147. |
[7] | Zheng Y, Zhou X, Wang C, et al. Effect of Tanshinone ⅡA on Gut Microbiome in Diabetes-Induced Cognitive Impairment[J]. Front Pharmacol, 2022,13:890444. doi: 10.3389/fphar.2022.890444. |
[8] | 虎亚光, 岳嘉, 李金娟, 等. 丹参酮胶囊对多囊卵巢综合征大鼠糖脂代谢及性激素的影响[J]. 中国药房, 2016, 27(19):2632-2634. doi: 10.6039/j.issn.1001-0408.2016.19.13. |
[9] | 匡洪影, 马珂昕, 李威, 等. 隐丹参酮调节PCOS模型大鼠卵巢颗粒细胞生殖内分泌机能的机制研究[J]. 中医药学报, 2017, 45(5):40-44. doi: 10.3969/j.issn.1002-2392.2017.05.010. |
[10] |
Jung SH, Seol HJ, Jeon SJ, et al. Insulin-sensitizing activities of tanshinones, diterpene compounds of the root of Salvia miltiorrhiza Bunge[J]. Phytomedicine, 2009, 16(4):327-335. doi: 10.1016/j.phymed.2008.12.017.
pmid: 19200697 |
[11] | Jung DY, Kim JH, Jung MH. Anti-Obesity Effects of Tanshinone Ⅰfrom Salvia miltiorrhiza Bunge in Mice Fed a High-Fat Diet through Inhibition of Early Adipogenesis[J]. Nutrients, 2020, 12(5):1242. doi: 10.3390/nu12051242. |
[12] | Hwang SL, Yang JH, Jeong YT, et al. Tanshinone ⅡA improves endoplasmic reticulum stress-induced insulin resistance through AMP-activated protein kinase[J]. Biochem Biophys Res Commun, 2013, 430(4):1246-1252. doi: 10.1016/j.bbrc.2012.12.066. |
[13] | Yang X, Zhang Y, Wu X, et al. Cryptotanshinone reverses reproductive and metabolic disturbances in prenatally androgenized rats via regulation of ovarian signaling mechanisms and androgen synthesis[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(4):R869-R875. doi: 10.1152/ajpregu.00334.2010. |
[14] | Pinky, Neha, Salman M, et al. Age-related pathophysiological alterations in molecular stress markers and key modulators of hypoxia[J]. Ageing Res Rev, 2023,90:102022. doi: 10.1016/j.arr.2023.102022. |
[15] | Zhou Y, Zhang H, Huang Y, et al. Tanshinone ⅡA regulates expression of glucose transporter 1 via activation of the HIF-1α signaling pathway[J]. Mol Med Rep, 2022, 26(5):328. doi: 10.3892/mmr.2022.12844. |
[16] |
Huang Y, Li W, Wang CC, et al. Cryptotanshinone reverses ovarian insulin resistance in mice through activation of insulin signaling and the regulation of glucose transporters and hormone synthesizing enzymes[J]. Fertil Steril, 2014, 102(2):589-596.e4. doi: 10.1016/j.fertnstert.2014.05.012.
pmid: 24973798 |
[17] | 王娜梅. 隐丹参酮对多囊卵巢综合征大鼠糖脂代谢及性激素的影响[J]. 中国妇幼保健, 2015, 30(20):3490-3493. doi: 10.7620/zgfybj.j.issn.1001-4411.2015.20.60. |
[18] | Heidarzadehpilehrood R, Pirhoushiaran M, Abdollahzadeh R, et al. A Review on CYP11A1, CYP17A1, and CYP19A1 Polymorphism Studies: Candidate Susceptibility Genes for Polycystic Ovary Syndrome (PCOS) and Infertility[J]. Genes (Basel), 2022, 13(2):302. doi: 10.3390/genes13020302. |
[19] | Ye D, Li M, Zhang Y, et al. Cryptotanshinone Regulates Androgen Synthesis through the ERK/c-Fos/CYP17 Pathway in Porcine Granulosa Cells[J]. Evid Based Complement Alternat Med, 2017, 2017:5985703. doi: 10.1155/2017/5985703. |
[20] | 王宇, 胡敏, 张跃辉, 等. 隐丹参酮对Akt2基因缺失雌鼠生殖功能及其效应机制的影响[J]. 中国中西医结合杂志, 2019, 39(5):577-582. doi: 10.7661/j.cjim.20190201.102. |
[21] | 熊曙康, 李威, 张丹, 等. 卵泡膜细胞胰岛素抵抗及隐丹参酮的调控[J]. 中华中医药杂志, 2012, 27(6):1639-1642. |
[22] | 祁冰, 宋家欣, 杨琳, 等. 基因芯片研究隐丹参酮对胰岛素抵抗卵巢颗粒细胞基因表达的影响[J]. 科技导报, 2009, 27(15):39-43. doi: 10.3321/j.issn:1000-7857.2009.15.007. |
[23] |
Qian Y, Tong Y, Zeng Y, et al. Integrated lipid metabolomics and proteomics analysis reveal the pathogenesis of polycystic ovary syndrome[J]. J Transl Med, 2024, 22(1):364. doi: 10.1186/s12967-024-05167-x.
pmid: 38632610 |
[24] | Peng Y, Zhao L, Li M, et al. Plasticity of Adipose Tissues: Interconversion among White, Brown, and Beige Fat and Its Role in Energy Homeostasis[J]. Biomolecules, 2024, 14(4):483. doi: 10.3390/biom14040483. |
[25] | Lemaitre M, Christin-Maitre S, Kerlan V. Polycystic ovary syndrome and adipose tissue[J]. Ann Endocrinol (Paris), 2023, 84(2):308-315. doi: 10.1016/j.ando.2022.11.004. |
[26] | Ma L, Zhao Z, Guo X, et al. Tanshinone ⅡA and its derivative activate thermogenesis in adipocytes and induce "beiging" of white adipose tissue[J]. Mol Cell Endocrinol, 2022,544:111557. doi: 10.1016/j.mce.2022.111557. |
[27] |
Villarroya F, Peyrou M, Giralt M. Transcriptional regulation of the uncoupling protein-1 gene[J]. Biochimie, 2017, 134:86-92. doi: 10.1016/j.biochi.2016.09.017.
pmid: 27693079 |
[28] | Luo J, Yu Z, Tovar J, et al. Critical review on anti-obesity effects of phytochemicals through Wnt/β-catenin signaling pathway[J]. Pharmacol Res, 2022,184:106461. doi: 10.1016/j.phrs.2022.106461. |
[29] | Park YK, Obiang-Obounou BW, Lee J, et al. Anti-Adipogenic Effects on 3T3-L1 Cells and Zebrafish by Tanshinone ⅡA[J]. Int J Mol Sci, 2017, 18(10):2065. doi: 10.3390/ijms18102065. |
[30] |
Rahman N, Jeon M, Song HY, et al. Cryptotanshinone, a compound of Salvia miltiorrhiza inhibits pre-adipocytes differentiation by regulation of adipogenesis-related genes expression via STAT3 signaling[J]. Phytomedicine, 2016, 23(1):58-67. doi: 10.1016/j.phymed.2015.12.004.
pmid: 26902408 |
[31] | Wu YL, Lin H, Li HF, et al. Salvia miltiorrhiza Extract and Individual Synthesized Component Derivatives Induce Activating-Transcription-Factor-3-Mediated Anti-Obesity Effects and Attenuate Obesity-Induced Metabolic Disorder by Suppressing C/EBPα in High-Fat-Induced Obese Mice[J]. Cells, 2022, 11(6):1022. doi: 10.3390/cells11061022. |
[32] | Orisaka M, Mizutani T, Miyazaki Y, et al. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging[J]. Front Endocrinol (Lausanne), 2023,14:1324429. doi: 10.3389/fendo.2023.1324429. |
[33] | Yang Y, Yang L, Qi C, et al. Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway[J]. Mol Med Rep, 2020, 22(5):3851-3861. doi: 10.3892/mmr.2020.11469. |
[34] | 陈静, 李威, 吴奇, 等. 小鼠卵巢器官的胰岛素抵抗及中药隐丹参酮的调控作用[J]. 医学研究生学报, 2015, 28(5):475-479. doi: 10.3969/j.issn.1008-8199.2015.05.006. |
[35] | Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications′ door[J]. Oncogene, 2020, 39(23):4491-4506. doi: 10.1038/s41388-020-1306-4. |
[36] | Liu H, Zhou J, Xie J, et al. Tanshinone ⅡA as a therapy for PCOS via FOS/JUN/TP53 axis: Evidence from network pharmacology of Bajitian-Danshen pair[J]. Arab J Chem, 2024, 17(4):105641. doi: 10.1016/j.arabjc.2024.105641. |
[37] | Lörincz CE, Börzsei D, Hoffmann A, et al. Mechanisms and Target Parameters in Relation to Polycystic Ovary Syndrome and Physical Exercise: Focus on the Master Triad of Hormonal Changes, Oxidative Stress, and Inflammation[J]. Biomedicines, 2024, 12(3):560. doi: 10.3390/biomedicines12030560. |
[38] | Xu R, Wang Z. Involvement of Transcription Factor FoxO1 in the Pathogenesis of Polycystic Ovary Syndrome[J]. Front Physiol, 2021, 12:649295. doi: 10.3389/fphys.2021.649295. |
[39] | Xiang Y, Wang H, Ding H, et al. Hyperandrogenism drives ovarian inflammation and pyroptosis: A possible pathogenesis of PCOS follicular dysplasia[J]. Int Immunopharmacol, 2023, 125(Pt A):111141. doi: 10.1016/j.intimp.2023.111141. |
[40] | Miao Q, Wang R, Sun X, et al. Combination of puerarin and tanshinone ⅡA alleviates ischaemic stroke injury in rats via activating the Nrf2/ARE signalling pathway[J]. Pharm Biol, 2022, 60(1):1022-1031. doi: 10.1080/13880209.2022.2070221. |
[41] | Liu QY, Zhuang Y, Song XR, et al. Tanshinone ⅡA prevents LPS-induced inflammatory responses in mice via inactivation of succinate dehydrogenase in macrophages[J]. Acta Pharmacol Sin, 2021, 42(6):987-997. doi: 10.1038/s41401-020-00535-x. |
[42] | Chełchowska M, Jurczewska J, Gajewska J, et al. Antioxidant Defense Expressed as Glutathione Status and Keap1-Nrf2 System Action in Relation to Anthropometric Parameters and Body Composition in Young Women with Polycystic Ovary Syndrome[J]. Antioxidants(Basel), 2023, 12(3):730. doi: 10.3390/antiox12030730. |
[43] | Bai L, He G, Gao C, et al. Tanshinone ⅡA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice[J]. Vet Med Sci, 2022, 8(4):1617-1625. doi: 10.1002/vms3.811. |
[44] | Fu K, Feng C, Shao L, et al. Tanshinone ⅡA exhibits anti-inflammatory and antioxidative effects in LPS-stimulated bovine endometrial epithelial cells by activating the Nrf2 signaling pathway[J]. Res Vet Sci, 2021, 136:220-226. doi: 10.1016/j.rvsc.2021.03.004. |
[45] | Li XX, Zheng X, Liu Z, et al. Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4/MyD88 signaling pathway[J]. Chin Med, 2020,15:20. doi: 10.1186/s13020-020-00303-3. |
[1] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[2] | 乔新月, 陶爱琳, 冯晓玲, 陈璐. 多囊卵巢综合征伴焦虑、抑郁障碍的相关性研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 506-511. |
[3] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[4] | 高征, 李梦元, 李博, 梁婧翘, 张雅冬, 许昕. 中药复方干预肥胖型多囊卵巢综合征糖脂代谢异常的Meta分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 368-377. |
[5] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[6] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[7] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[8] | 石百超, 常惠, 王宇, 卢凤娟, 王凯悦, 关木馨, 马良, 吴效科. 肠道菌群在多囊卵巢综合征中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 238-242. |
[9] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
[10] | 代鹤琦, 毛菲, 冯睿芝, 钱云. lncRNA作为ceRNA在多囊卵巢综合征中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 144-149. |
[11] | 甄佳, 赵紫渊, 王子璐, 师伟, 徐丽. 多囊卵巢综合征病理机制中的颗粒细胞自噬[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 150-154. |
[12] | 任露露, 任文超, 张晓轩, 任春娥. 多囊卵巢综合征患者卵巢颗粒细胞胰岛素抵抗的相关信号通路[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 32-37. |
[13] | 刘一燃, 冯睿芝, 钱云. 多囊卵巢综合征中翻译后修饰的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 38-42. |
[14] | 周昕玥, 李宁, 魏林飞, 张学红. 肠道菌群及肠道代谢物与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 42-47. |
[15] | 曲慧颖, 桂文武. 多囊卵巢综合征女性体内的慢性低度炎症[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 48-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||