[1] |
Yang C, Zeng QX, Liu JC, et al. Role of small RNAs harbored by sperm in embryonic development and offspring phenotype[J]. Andrology, 2023, 11(4):770-782. doi: 10.1111/andr.13347.
|
[2] |
Short AK, Fennell KA, Perreau VM, et al. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring[J]. Transl Psychiatry, 2016, 6(6):e837. doi: 10.1038/tp.2016.109.
|
[3] |
Alshanbayeva A, Tanwar DK, Roszkowski M, et al. Early life stress affects the miRNA cargo of epididymal extracellular vesicles in mouse[J]. Biol Reprod, 2021, 105(3):593-602. doi: 10.1093/biolre/ioab156.
pmid: 34426825
|
[4] |
Tóth KF, Pezic D, Stuwe E, et al. The piRNA Pathway Guards the Germline Genome Against Transposable Elements[J]. Adv Exp Med Biol, 2016,886:51-77. doi: 10.1007/978-94-017-7417-8_4.
|
[5] |
Derakhshan Z, Bahmanpour S, Alaee S, et al. The Role of Circular RNAs in Male Infertility and Reproductive Cancers: A Narrative Review[J]. Iran J Med Sci, 2023, 48(6):527-541. doi: 10.30476/IJMS.2022.95302.2661.
|
[6] |
Ma Z, Li J, Fu L, et al. Epididymal RNase T2 contributes to astheno-teratozoospermia and intergenerational metabolic disorder through epididymosome-sperm interaction[J]. BMC Med, 2023, 21(1):453. doi: 10.1186/s12916-023-03158-1.
pmid: 37993934
|
[7] |
Fullston T, Ohlsson-Teague EM, Print CG, et al. Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring′s Sperm[J]. PLoS One, 2016, 11(11):e0166076. doi: 10.1371/journal.pone.0166076.
|
[8] |
Ng SF, Lin RC, Laybutt DR, et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring[J]. Nature, 2010, 467(7318):963-966. doi: 10.1038/nature09491.
|
[9] |
Wu YL, Lin ZJ, Li CC, et al. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study[J]. Signal Transduct Target Ther, 2023, 8(1):98. doi: 10.1038/s41392-023-01333-7.
|
[10] |
Luo J, Tan X, Li H, et al. sncRNAs in Epididymosomes: The Contribution to Embryonic Development and Offspring Health[J]. Int J Mol Sci, 2022, 23(18):10851. doi: 10.3390/ijms231810851.
|
[11] |
He T, Guo H, Xia L, et al. Alterations of RNA Modification in Mouse Germ Cell-2 Spermatids Under Hypoxic Stress[J]. Front Mol Biosci, 2022,9:871737. doi: 10.3389/fmolb.2022.871737.
|
[12] |
Zeng L, Zhou J, Zhang Y, et al. Differential Expression Profiles and Potential Intergenerational Functions of tRNA-Derived Small RNAs in Mice After Cadmium Exposure[J]. Front Cell Dev Biol, 2021,9:791784. doi: 10.3389/fcell.2021.791784.
|
[13] |
Crafa A, Cannarella R, Calogero AE, et al. Behind the Genetics: The Role of Epigenetics in Infertility-Related Testicular Dysfunction[J]. Life(Basel), 2024, 14(7):803. doi: 10.3390/life14070803.
|
[14] |
Rodgers AB, Morgan CP, Leu NA, et al. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress[J]. Proc Natl Acad Sci U S A, 2015, 112(44):13699-13704. doi: 10.1073/pnas.1508347112.
|
[15] |
Tomar A, Gomez-Velazquez M, Gerlini R, et al. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs[J]. Nature, 2024, 630(8017):720-727. doi: 10.1038/s41586-024-07472-3.
|
[16] |
Hernandez R, Li X, Shi J, et al. Paternal hypercholesterolemia elicits sex-specific exacerbation of atherosclerosis in offspring[J]. JCI Insight, 2024, 9(17):e179291. doi: 10.1172/jci.insight.179291.
|
[17] |
Zatecka E, Bohuslavova R, Valaskova E, et al. The Transgenerational Transmission of the Paternal Type 2 Diabetes-Induced Subfertility Phenotype[J]. Front Endocrinol(Lausanne), 2021,12:763863. doi: 10.3389/fendo.2021.763863.
|
[18] |
Grandjean V, Fourré S, De Abreu DA, et al. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders[J]. Sci Rep, 2015,5:18193. doi: 10.1038/srep18193.
|
[19] |
Mao Y, Meng Y, Zou K, et al. Advanced paternal age exacerbates neuroinflammation in offspring via m6A modification-mediated intergenerational inheritance[J]. J Neuroinflammation, 2024, 21(1):249. doi: 10.1186/s12974-024-03248-8.
|
[20] |
Ashapkin V, Suvorov A, Pilsner JR, et al. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development[J]. Hum Reprod Update, 2023, 29(1):24-44. doi: 10.1093/humupd/dmac033.
|
[21] |
Xie K, Ryan DP, Pearson BL, et al. Epigenetic alterations in longevity regulators, reduced life span, and exacerbated aging-related pathology in old father offspring mice[J]. Proc Natl Acad Sci U S A, 2018, 115(10):E2348-E2357. doi: 10.1073/pnas.1707337115.
|
[22] |
Zhang Y, Ren L, Sun X, et al. Angiogenin mediates paternal inflammation-induced metabolic disorders in offspring through sperm tsRNAs[J]. Nat Commun, 2021, 12(1):6673. doi: 10.1038/s41467-021-26909-1.
pmid: 34845238
|
[23] |
Maxwell DL, Oluwayiose OA, Houle E, et al. Mixtures of per- and polyfluoroalkyl substances (PFAS) alter sperm methylation and long-term reprogramming of offspring liver and fat transcriptome[J]. Environ Int, 2024,186:108577. doi: 10.1016/j.envint.2024.108577.
|
[24] |
Sun J, Teng M, Zhu W, et al. MicroRNA and Gut Microbiota Alter Intergenerational Effects of Paternal Exposure to Polyethylene Nanoplastics[J]. ACS Nano, 2024, 18(27):18085-18100. doi: 10.1021/acsnano.4c06298.
|
[25] |
Zhou J, Zhang Y, Zeng L, et al. Paternal cadmium exposure affects testosterone synthesis by reducing the testicular cholesterol pool in offspring mice[J]. Ecotoxicol Environ Saf, 2022,242:113947. doi: 10.1016/j.ecoenv.2022.113947.
|
[26] |
Cincotta SA, Richardson N, Foecke MH, et al. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling[J]. bioRxiv,2023 oct 11: 2023.06.30.547215. doi: 10.1101/2023.06.30.547215.
|
[27] |
Trollope AF, Mifsud KR, Saunderson EA, et al. Molecular and Epigenetic Mechanisms Underlying Cognitive and Adaptive Responses to Stress[J]. Epigenomes, 2017, 1(3):17. doi: 10.3390/epigenomes1030017.
pmid: 31921466
|
[28] |
Chen S, Ding S, Pang Y, et al. Dysregulated miR-124 mediates impaired social memory behavior caused by paternal early social isolation[J]. Transl Psychiatry, 2024, 14(1):392. doi: 10.1038/s41398-024-03109-1.
|
[29] |
Wang SY, Kim K, O′Brown ZK, et al. Hypoxia induces transgenerational epigenetic inheritance of small RNAs[J]. Cell Rep, 2022, 41(11):111800. doi: 10.1016/j.celrep.2022.111800.
|
[30] |
Argaw-Denboba A, Schmidt T, Di Giacomo M, et al. Paternal microbiome perturbations impact offspring fitness[J]. Nature, 2024, 629(8012):652-659. doi: 10.1038/s41586-024-07336-w.
|
[31] |
Masson BA, Kiridena P, Lu D, et al. Depletion of the paternal gut microbiome alters sperm small RNAs and impacts offspring physiology and behavior in mice[J]. Brain Behav Immun, 2024, 123:290-305. doi: 10.1016/j.bbi.2024.09.020.
pmid: 39293692
|
[32] |
Andersen E, Juhl CR, Kjøller ET, et al. Sperm count is increased by diet-induced weight loss and maintained by exercise or GLP-1 analogue treatment: a randomized controlled trial[J]. Hum Reprod, 2022, 37(7):1414-1422. doi: 10.1093/humrep/deac096.
|
[33] |
Karevanpour F, Tavalaee M, Kazeminasab F, et al. The effect of green coffee and/or endurance exercise on sperm function in pre-diabetic mice[J]. Andrologia, 2022, 54(10):e14560. doi: 10.1111/and.14560.
|
[34] |
Ibañez-Perez J, Santos-Zorrozua B, Lopez-Lopez E, et al. An update on the implication of physical activity on semen quality: a systematic review and meta-analysis[J]. Arch Gynecol Obstet, 2019, 299(4):901-921. doi: 10.1007/s00404-019-05045-8.
pmid: 30671700
|
[35] |
Claycombe-Larson KG, Bundy AN, Roemmich JN. Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner[J]. J Nutr Biochem, 2020,81:108373. doi: 10.1016/j.jnutbio.2020.108373.
|
[36] |
Heydari H, Ghiasi R, Hamidian G, et al. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis[J]. Horm Mol Biol Clin Investig, 2021, 42(3):253-263. doi: 10.1515/hmbci-2020-0085.
pmid: 33638320
|
[37] |
Ingerslev LR, Donkin I, Fabre O, et al. Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots[J]. Clin Epigenetics, 2018,10:12. doi: 10.1186/s13148-018-0446-7.
|
[38] |
Wu S, Guo W, Li X, et al. Paternal chronic folate supplementation induced the transgenerational inheritance of acquired developmental and metabolic changes in chickens[J]. Proc Biol Sci,2019, 286(1910):20191653. doi: 10.1098/rspb.2019.1653.
|
[39] |
Wu S, Guo W, Yan T, et al. Spermatozoal mRNAs expression implicated in embryonic development were influenced by dietary folate supplementation of breeder roosters by altering spermatozoal piRNA expression profiles[J]. Theriogenology, 2019, 138:102-110. doi: 10.1016/j.theriogenology.2019.07.009.
pmid: 31325740
|
[40] |
Zhong H, Chen K, Feng M, et al. Genipin alleviates high-fat diet-induced hyperlipidemia and hepatic lipid accumulation in mice via miR-142a-5p/SREBP-1c axis[J]. FEBS J, 2018, 285(3):501-517. doi: 10.1111/febs.14349.
pmid: 29197188
|
[41] |
Wang L, Chen G, Wu S, et al. Genipin improves lipid metabolism and sperm parametersin obese mice via regulation of miR-132 expression[J]. Acta Biochim Biophys Sin(Shanghai), 2022, 54(9):1278-1288. doi: 10.3724/abbs.2022120.
|