国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (5): 425-429.doi: 10.12280/gjszjk.20220245
收稿日期:
2022-05-11
出版日期:
2022-09-15
发布日期:
2022-10-12
通讯作者:
陈蛟
E-mail:cqmuchenjiao@hotmail.com
基金资助:
PEI Jiao-jiao, HUANG Chao-lin, CHEN Jiao()
Received:
2022-05-11
Published:
2022-09-15
Online:
2022-10-12
Contact:
CHEN Jiao
E-mail:cqmuchenjiao@hotmail.com
摘要:
胎盘是受精卵分化后从合体滋养层细胞发育而来的。胎盘作为一个短暂的器官,在胎儿生长发育中发挥着代谢、分泌和物理屏障等重要作用。母胎间通过胎盘进行物质交换也是母亲和胎儿之间的一种沟通机制,是保证妊娠期间胎儿健康发育和母亲正常妊娠的基础。研究认为铁死亡作为一种独特的死亡方式,与胎盘生理和病理有关。尤其是病理妊娠中随着抗氧化能力和脂质过氧化修复能力的降低,胎盘逐渐损伤,最终导致胎盘源性疾病发生。通过对目前铁死亡与胎盘源性疾病的相关文献进行整合归纳,从铁死亡的方向进一步阐明其对胎盘源性疾病的影响,为探索新的治疗方法和预防措施提供可能。
裴娇娇, 黄超林, 陈蛟. 铁死亡与胎盘源性疾病的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(5): 425-429.
PEI Jiao-jiao, HUANG Chao-lin, CHEN Jiao. Research Progress of Ferroptosis and Placental Diseases[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 425-429.
[1] |
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1):81-90. doi: 10.1038/nchembio.2238.
doi: 10.1038/nchembio.2238 pmid: 27842066 |
[2] |
Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2):107-125. doi: 10.1038/s41422-020-00441-1.
doi: 10.1038/s41422-020-00441-1 pmid: 33268902 |
[3] |
Kajiwara K, Beharier O, Chng CP, et al. Ferroptosis induces membrane blebbing in placental trophoblasts[J]. J Cell Sci, 2022, 135(5):jcs255737. doi: 10.1242/jcs.255737.
doi: 10.1242/jcs.255737 |
[4] |
Delhaes F, Giza SA, Koreman T, et al. Altered maternal and placental lipid metabolism and fetal fat development in obesity: Current knowledge and advances in non-invasive assessment[J]. Placenta, 2018, 69:118-124. doi: 10.1016/j.placenta.2018.05.011.
doi: S0143-4004(18)30255-8 pmid: 29907450 |
[5] |
Lee JY, Kim WK, Bae KH, et al. Lipid Metabolism and Ferroptosis[J]. Biology(Basel), 2021, 10(3):184. doi: 10.3390/biology10030184.
doi: 10.3390/biology10030184 |
[6] |
Sangkhae V, Nemeth E. Placental iron transport: The mechanism and regulatory circuits[J]. Free Radic Biol Med, 2019, 133:254-261. doi: 10.1016/j.freeradbiomed.2018.07.001.
doi: 10.1016/j.freeradbiomed.2018.07.001 URL |
[7] |
Guo L, Zhang D, Liu S, et al. Maternal iron supplementation during pregnancy affects placental function and iron status in offspring[J]. J Trace Elem Med Biol, 2022, 71:126950. doi: 10.1016/j.jtemb.2022.126950.
doi: 10.1016/j.jtemb.2022.126950 URL |
[8] |
Conrad M, Pratt DA. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019, 15(12):1137-1147. doi: 10.1038/s41589-019-0408-1.
doi: 10.1038/s41589-019-0408-1 pmid: 31740834 |
[9] |
Shah R, Shchepinov MS, Pratt DA. Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis[J]. ACS Cent Sci, 2018, 4(3):387-396. doi: 10.1021/acscentsci.7b00589.
doi: 10.1021/acscentsci.7b00589 URL |
[10] |
Zhou N, Bao J. FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations[J]. Database(Oxford), 2020, 2020:baaa021. doi: 10.1093/database/baaa021.
doi: 10.1093/database/baaa021 |
[11] |
Forcina GC, Dixon SJ. GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis[J]. Proteomics, 2019, 19(18):e1800311. doi: 10.1002/pmic.201800311.
doi: 10.1002/pmic.201800311 |
[12] |
Beharier O, Kajiwara K, Sadovsky Y. Ferroptosis, trophoblast lipotoxic damage, and adverse pregnancy outcome[J]. Placenta, 2021, 108:32-38. doi: 10.1016/j.placenta.2021.03.007.
doi: 10.1016/j.placenta.2021.03.007 pmid: 33812183 |
[13] |
Murakami M, Nakatani Y, Atsumi GI, et al. Regulatory Functions of Phospholipase A2[J]. Crit Rev Immunol, 2017, 37(2/3/4/5/6):127-195. doi: 10.1615/CritRevImmunol.v37.i2-6.20.
doi: 10.1615/CritRevImmunol.v37.i2-6.20 |
[14] |
Beharier O, Tyurin VA, Goff JP, et al. PLA2G6 guards placental trophoblasts against ferroptotic injury[J]. Proc Natl Acad Sci U S A, 2020, 117(44):27319-27328. doi: 10.1073/pnas.2009201117.
doi: 10.1073/pnas.2009201117 pmid: 33087576 |
[15] |
Sun WY, Tyurin VA, Mikulska-Ruminska K, et al. Phospholipase iPLA(2)β averts ferroptosis by eliminating a redox lipid death signal[J]. Nat Chem Biol, 2021, 17(4):465-476. doi: 10.1038/s41589-020-00734-x.
doi: 10.1038/s41589-020-00734-x URL |
[16] |
Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress[J]. Circ Res, 2020, 126(4):439-452. doi: 10.1161/CIRCRESAHA.119.315767.
doi: 10.1161/CIRCRESAHA.119.315767 pmid: 31852393 |
[17] |
Yu H, Zhang Y, Liu M, et al. SIRT3 deficiency affects the migration, invasion, tube formation and necroptosis of trophoblast and is implicated in the pathogenesis of preeclampsia[J]. Placenta, 2022, 120:1-9. doi: 10.1016/j.placenta.2022.01.014.
doi: 10.1016/j.placenta.2022.01.014 pmid: 35150983 |
[18] |
Alvarez SW, Sviderskiy VO, Terzi EM, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis[J]. Nature, 2017, 551(7682):639-643. doi: 10.1038/nature24637.
doi: 10.1038/nature24637 URL |
[19] |
Yang Y, Luo M, Zhang K, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma[J]. Nat Commun, 2020, 11(1):433. doi: 10.1038/s41467-020-14324-x.
doi: 10.1038/s41467-020-14324-x |
[20] |
Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ, 2020, 27(2):662-675. doi: 10.1038/s41418-019-0380-z.
doi: 10.1038/s41418-019-0380-z pmid: 31273299 |
[21] |
Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26(11):2284-2299. doi: 10.1038/s41418-019-0299-4.
doi: 10.1038/s41418-019-0299-4 pmid: 30737476 |
[22] |
Burton GJ, Cindrova-Davies T, Yung HW, et al. HYPOXIA AND REPRODUCTIVE HEALTH: Oxygen and development of the human placenta[J]. Reproduction, 2021, 161(1):F53-F65. doi: 10.1530/REP-20-0153.
doi: 10.1530/REP-20-0153 URL |
[23] |
Wray S, Alruwaili M, Prendergast C. HYPOXIA AND REPRODUCTIVE HEALTH: Hypoxia and labour[J]. Reproduction, 2021, 161(1):F67-F80. doi: 10.1530/REP-20-0327.
doi: 10.1530/REP-20-0327 pmid: 33112773 |
[24] |
Schoots MH, Gordijn SJ, Scherjon SA, et al. Oxidative stress in placental pathology[J]. Placenta, 2018, 69:153-161. doi: 10.1016/j.placenta.2018.03.003.
doi: S0143-4004(18)30070-5 pmid: 29622278 |
[25] |
Turco MY, Gardner L, Kay RG, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation[J]. Nature, 2018, 564(7735):263-267. doi: 10.1038/s41586-018-0753-3.
doi: 10.1038/s41586-018-0753-3 URL |
[26] |
Taysi S, Tascan AS, Ugur MG, et al. Radicals, Oxidative/Nitrosative Stress and Preeclampsia[J]. Mini Rev Med Chem, 2019, 19(3):178-193. doi: 10.2174/1389557518666181015151350.
doi: 10.2174/1389557518666181015151350 pmid: 30324879 |
[27] |
Guerby P, Tasta O, Swiader A, et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia[J]. Redox Biol, 2021, 40:101861. doi: 10.1016/j.redox.2021.101861.
doi: 10.1016/j.redox.2021.101861 URL |
[28] |
Zhang H, He Y, Wang JX, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biol, 2020, 29:101402. doi: 10.1016/j.redox.2019.101402.
doi: 10.1016/j.redox.2019.101402 URL |
[29] |
Jones JG. Hepatic glucose and lipid metabolism[J]. Diabetologia, 2016, 59(6):1098-1103. doi: 10.1007/s00125-016-3940-5.
doi: 10.1007/s00125-016-3940-5 pmid: 27048250 |
[30] |
Zheng Y, Hu Q, Wu J. Adiponectin ameliorates placental injury in gestational diabetes mice by correcting fatty acid oxidation/peroxide imbalance-induced ferroptosis via restoration of CPT-1 activity[J]. Endocrine, 2022, 75(3):781-793. doi: 10.1007/s12020-021-02933-5.
doi: 10.1007/s12020-021-02933-5 URL |
[31] |
Han D, Jiang L, Gu X, et al. SIRT3 deficiency is resistant to autophagy-dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels[J]. J Cell Physiol, 2020, 235(11):8839-8851. doi: 10.1002/jcp.29727.
doi: 10.1002/jcp.29727 pmid: 32329068 |
[32] |
Yang XD, Yang YY. Ferroptosis as a Novel Therapeutic Target for Diabetes and Its Complications[J]. Front Endocrinol(Lausanne), 2022, 13:853822. doi: 10.3389/fendo.2022.853822.
doi: 10.3389/fendo.2022.853822 |
[33] |
Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction[J]. Am J Obstet Gynecol, 2018, 218(2S):S745-S761. doi: 10.1016/j.ajog.2017.11.577.
doi: 10.1016/j.ajog.2017.11.577 |
[34] |
Akison LK, Nitert MD, Clifton VL, et al. Review: Alterations in placental glycogen deposition in complicated pregnancies: Current preclinical and clinical evidence[J]. Placenta, 2017, 54:52-58. doi: 10.1016/j.placenta.2017.01.114.
doi: S0143-4004(17)30116-9 pmid: 28117144 |
[35] |
Miller SL, Yawno T, Alers NO, et al. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction[J]. J Pineal Res, 2014, 56(3):283-294. doi: 10.1111/jpi.12121.
doi: 10.1111/jpi.12121 pmid: 24456220 |
[36] |
Zhang Y, Zhou J, Li MQ, et al. MicroRNA-184 promotes apoptosis of trophoblast cells via targeting WIG1 and induces early spontaneous abortion[J]. Cell Death Dis, 2019, 10(3):223. doi: 10.1038/s41419-019-1443-2.
doi: 10.1038/s41419-019-1443-2 pmid: 30833572 |
[37] |
Meihe L, Shan G, Minchao K, et al. The Ferroptosis-NLRP1 Inflammasome: The Vicious Cycle of an Adverse Pregnancy[J]. Front Cell Dev Biol, 2021, 9:707959. doi: 10.3389/fcell.2021.707959.
doi: 10.3389/fcell.2021.707959 URL |
[38] |
Stefanovic V, Andersson S, Vento M. Oxidative stress-Related spontaneous preterm delivery challenges in causality determination, prevention and novel strategies in reduction of the sequelae[J]. Free Radic Biol Med, 2019, 142:52-60. doi: 10.1016/j.freeradbiomed.2019.06.008.
doi: 10.1016/j.freeradbiomed.2019.06.008 URL |
[39] |
Li Q, Han X, Lan X, et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain[J]. JCI Insight, 2017, 2(7):e90777. doi: 10.1172/jci.insight.90777.
doi: 10.1172/jci.insight.90777 URL |
[1] | 高晓丽, 苏婧, 李增彦, 李洁. 14例妊娠相关溶血尿毒症综合征临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 458-461. |
[2] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[3] | 柳芳蕾, 冯晓玲. 甲状腺相关激素与子痫前期的相关性[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 348-352. |
[4] | 林凯璇, 闻浩, 杨夫艳. 基于知识图谱的早发型子痫前期发病预测模型相关研究的可视化分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 101-107. |
[5] | 杨玉婷, 惠玲, 陈雪, 张钏, 田芯瑗, 周秉博. 一例产前Silver-Russell综合征胎儿的基因变异分析[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 371-376. |
[6] | 宋秋瑾, 钱晓红, 陈骞. 肠道菌群与妊娠并发症相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 409-413. |
[7] | 何玥, 崔红梅. 铁死亡在产科疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 414-418. |
[8] | 高亚婷, 马建红, 马怡彤, 刘畅. 铁死亡与宫颈癌相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 436-440. |
[9] | 陈露, 杨春霞, 孙妍, 李峰, 薛同敏, 卢丹. 铁过载及铁死亡对子宫内膜异位症患者生殖功能的影响[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 261-264. |
[10] | 李濛, 吴亚梅, 李佳雯, 郑小敏, 应豪, 黄璐. 胎盘来源外泌体在诊断胎儿生长受限中的应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 156-160. |
[11] | 陈铖, 冯晓玲. 白细胞介素-1β与妊娠及其相关疾病的关系[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 161-166. |
[12] | 苏婧, 高晓丽, 李增彦. 宫颈机能不全与宫颈环扎术[J]. 国际生殖健康/计划生育, 2022, 41(6): 514-518. |
[13] | 高倩倩, 冯晓玲. 环状RNA与妊娠相关疾病[J]. 国际生殖健康/计划生育, 2022, 41(5): 430-435. |
[14] | 李姗姗, 申永梅, 卫卓, 陈凌, 姚立英, 张蕾, 李雯, 曹家松, 常颖. 胎盘嵌合型16三体合并胎儿生长受限一例[J]. 国际生殖健康/计划生育, 2022, 41(3): 207-209. |
[15] | 任军丽, 杨柳, 黎燕, 黄丽娟, 李雪娇, 李海鸿. 我国早产儿视网膜病发病率的Meta分析[J]. 国际生殖健康/计划生育, 2021, 40(6): 462-467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||