[1] |
Zeng X, Xie YJ, Liu YT, et al. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity[J]. Clin Chim Acta, 2020, 502:214-221. doi: 10.1016/j.cca.2019.11.003.
pmid: 31733195
|
[2] |
Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome[J]. Hum Reprod, 2018, 33(9):1602-1618. doi: 10.1093/humrep/dey256.
|
[3] |
Li M, Chi X, Wang Y, et al. Trends in insulin resistance: insights into mechanisms and therapeutic strategy[J]. Signal Transduct Target Ther, 2022, 7(1):216. doi: 10.1038/s41392-022-01073-0.
|
[4] |
Tong C, Wu Y, Zhang L, et al. Insulin resistance, autophagy and apoptosis in patients with polycystic ovary syndrome: Association with PI3K signaling pathway[J]. Front Endocrinol(Lausanne), 2022, 13:1091147. doi: 10.3389/fendo.2022.1091147.
|
[5] |
杨蕾, 陶仕英, 王继峰, 等. PI3k/Akt通路参与二仙汤抑制顺铂所致卵巢颗粒细胞凋亡的作用[J]. 世界科学技术-中医药现代化, 2016, 18(8):1362-1367. doi: 10.11842/wst.2016.08.020.
|
[6] |
Qiu Z, Dong J, Xue C, et al. Liuwei Dihuang Pills alleviate the polycystic ovary syndrome with improved insulin sensitivity through PI3K/Akt signaling pathway[J]. J Ethnopharmacol, 2020, 250:111965. doi: 10.1016/j.jep.2019.111965.
|
[7] |
Huang Y, Zhang X. Luteolin alleviates polycystic ovary syndrome in rats by resolving insulin resistance and oxidative stress[J]. Am J Physiol Endocrinol Metab, 2021, 320(6):E1085-E1092. doi: 10.1152/ajpendo.00034.2021.
pmid: 33900851
|
[8] |
Wang C, Ding C, Hua Z, et al. Cangfudaotan Decoction Alleviates Insulin Resistance and Improves Follicular Development in Rats with Polycystic Ovary Syndrome via IGF-1-PI3K/Akt-Bax/Bcl-2 Pathway[J]. Mediators Inflamm, 2020, 2020:8865647. doi: 10.1155/2020/8865647.
|
[9] |
Guo R, Zheng H, Li Q, et al. Melatonin alleviates insulin resistance through the PI3K/AKT signaling pathway in ovary granulosa cells of polycystic ovary syndrome[J]. Reprod Biol, 2022, 22(1):100594. doi: 10.1016/j.repbio.2021.100594.
|
[10] |
Liu J, Wu DC, Qu LH, et al. The role of mTOR in ovarian Neoplasms, polycystic ovary syndrome, and ovarian aging[J]. Clin Anat, 2018, 31(6):891-898. doi: 10.1002/ca.23211.
pmid: 29752839
|
[11] |
Zhu Y, Li Y, Liu M, et al. Guizhi Fuling Wan, Chinese Herbal Medicine, Ameliorates Insulin Sensitivity in PCOS Model Rats With Insulin Resistance via Remodeling Intestinal Homeostasis[J]. Front Endocrinol(Lausanne), 2020, 11:575. doi: 10.3389/fendo.2020.00575.
|
[12] |
Fazel Torshizi F, Chamani M, Khodaei HR, et al. Therapeutic effects of organic zinc on reproductive hormones, insulin resistance and mTOR expression, as a novel component, in a rat model of Polycystic ovary syndrome[J]. Iran J Basic Med Sci, 2020, 23(1):36-45. doi: 10.22038/IJBMS.2019.36004.8586.
pmid: 32405346
|
[13] |
Tan M, Cheng Y, Zhong X, et al. LNK promotes granulosa cell apoptosis in PCOS via negatively regulating insulin-stimulated AKT-FOXO3 pathway[J]. Aging(Albany NY), 2021, 13(3):4617-4633. doi: 10.18632/aging.202421.
|
[14] |
Shi L, Liu S, Zhao W, et al. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase Ⅱ oocytes from women with polycystic ovary syndrome[J]. Reprod Biomed Online, 2015, 31(4):565-572. doi: 10.1016/j.rbmo.2015.06.023.
|
[15] |
Yang X, Wang K, Lang J, et al. Up-regulation of miR-133a-3p promotes ovary insulin resistance on granulosa cells of obese PCOS patients via inhibiting PI3K/AKT signaling[J]. BMC Womens Health, 2022, 22(1):412. doi: 10.1186/s12905-022-01994-6.
pmid: 36209087
|
[16] |
Li T, Mo H, Chen W, et al. Role of the PI3K-Akt Signaling Pathway in the Pathogenesis of Polycystic Ovary Syndrome[J]. Reprod Sci, 2017, 24(5):646-655. doi: 10.1177/1933719116667606.
pmid: 27613818
|
[17] |
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications[J]. Endocr Rev, 2012, 33(6):981-1030. doi: 10.1210/er.2011-1034.
pmid: 23065822
|
[18] |
Walters KA, Moreno-Asso A, Stepto NK, et al. Key signalling pathways underlying the aetiology of polycystic ovary syndrome[J]. J Endocrinol, 2022, 255(1):R1-R26. doi: 10.1530/JOE-22-0059.
pmid: 35980384
|
[19] |
Belani M, Deo A, Shah P, et al. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients[J]. J Steroid Biochem Mol Biol, 2018, 178:283-292. doi: 10.1016/j.jsbmb.2018.01.008.
|
[20] |
任文超, 刘建新, 祁秀娟, 等. 二甲双胍对卵巢颗粒细胞IRS-1及ERK-2基因表达的影响[J]. 国际生殖健康/计划生育杂志, 2013, 32(3):154-156,171.
|
[21] |
赵粉琴, 赵艳, 刘洁颖, 等. 黄连素对PCOS模型大鼠LPS/NF-κB、MAPK信号通路的影响[J]. 中国应用生理学杂志, 2022, 38(2):181-186,192. doi: 10.12047/j.cjap.6229.2022.029.
|
[22] |
Wang Z, Zhai D, Zhang D, et al. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment[J]. Reprod Sci, 2017, 24(5):682-690. doi: 10.1177/1933719116667218.
pmid: 27634381
|
[23] |
Zhu Q, Yao Y, Xu L, et al. Elevated SAA1 promotes the development of insulin resistance in ovarian granulosa cells in polycystic ovary syndrome[J]. Reprod Biol Endocrinol, 2022, 20(1):4. doi: 10.1186/s12958-021-00873-3.
|
[24] |
Tan W, Zhang J, Dai F, et al. Insights on the NF-κB system in polycystic ovary syndrome, attractive therapeutic targets[J]. Mol Cell Biochem,2023 Apr 25. doi: 10.1007/s11010-023-04736-w.
|
[25] |
Hu M, Zhang Y, Guo X, et al. Perturbed ovarian and uterine glucocorticoid receptor signaling accompanies the balanced regulation of mitochondrial function and NFκB-mediated inflammation under conditions of hyperandrogenism and insulin resistance[J]. Life Sci, 2019, 232:116681. doi: 10.1016/j.lfs.2019.116681.
|
[26] |
Shen H, Xu X, Fu Z, et al. The interactions of CAP and LYN with the insulin signaling transducer CBL play an important role in polycystic ovary syndrome[J]. Metabolism, 2022, 131:155164. doi: 10.1016/j.metabol.2022.155164.
|
[27] |
Cirillo F, Catellani C, Sartori C, et al. CFTR and FOXO1 gene expression are reduced and high mobility group box 1 (HMGB1) is increased in the ovaries and serum of women with polycystic ovarian syndrome[J]. Gynecol Endocrinol, 2019, 35(10):842-846. doi: 10.1080/09513590.2019.1599349.
|
[28] |
Huang Y, Li W, Wang CC, et al. Cryptotanshinone reverses ovarian insulin resistance in mice through activation of insulin signaling and the regulation of glucose transporters and hormone synthesizing enzymes[J]. Fertil Steril, 2014, 102(2):589-596.e4. doi: 10.1016/j.fertnstert.2014.05.012.
pmid: 24973798
|
[29] |
Yang Y, Yang L, Qi C, et al. Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway[J]. Mol Med Rep, 2020, 22(5):3851-3861. doi: 10.3892/mmr.2020.11469.
|
[30] |
Almario RU, Karakas SE. Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation[J]. Horm Metab Res, 2015, 47(2):152-157. doi: 10.1055/s-0034-1384521.
pmid: 25089371
|
[31] |
Zhao Y, Zhang C, Huang Y, et al. Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients[J]. J Clin Endocrinol Metab, 2015, 100(1):201-211. doi: 10.1210/jc.2014-2419.
pmid: 25303486
|
[32] |
牛群, 石婧婧, 符江. WNT5A基因对卵巢颗粒细胞胰岛素反应性和胰岛素抵抗的调控作用[J]. 山东大学学报(医学版), 2021, 59(6):57-63. doi: 10.6040/j.issn.1671-7554.0.2021.0304.
|
[33] |
Lai Q, Xiang W, Li Q, et al. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome[J]. Front Med, 2018, 12(5):518-524. doi: 10.1007/s11684-017-0575-y.
|
[34] |
Yu C, Chen H, Du D, et al. β-Glucan from Saccharomyces cerevisiae alleviates oxidative stress in LPS-stimulated RAW264.7 cells via Dectin-1/Nrf2/HO-1 signaling pathway[J]. Cell Stress Chaperones, 2021, 26(4):629-637. doi: 10.1007/s12192-021-01205-5.
|
[35] |
Gharaei R, Alyasin A, Mahdavinezhad F, et al. Randomized controlled trial of astaxanthin impacts on antioxidant status and assisted reproductive technology outcomes in women with polycystic ovarian syndrome[J]. J Assist Reprod Genet, 2022, 39(4):995-1008. doi: 10.1007/s10815-022-02432-0.
|
[36] |
Li Y, Xu J, Li L, et al. Inhibition of Nicotinamide adenine dinucleotide phosphate oxidase 4 attenuates cell apoptosis and oxidative stress in a rat model of polycystic ovary syndrome through the activation of Nrf-2/HO-1 signaling pathway[J]. Mol Cell Endocrinol, 2022, 550:111645. doi: 10.1016/j.mce.2022.111645.
|
[37] |
赵洪强, 时敬爱, 王金权, 等. 大豆异黄酮调节Nrf2/HO-1信号通路对多囊卵巢综合征大鼠卵巢组织损伤的影响[J]. 中国药学杂志, 2023, 58(8):699-707. doi: 10.11669/cpj.2023.08.007.
|
[38] |
Xu A, Fan Y, Liu S, et al. GIMAP7 induces oxidative stress and apoptosis of ovarian granulosa cells in polycystic ovary syndrome by inhibiting sonic hedgehog signalling pathway[J]. J Ovarian Res, 2022, 15(1):141. doi: 10.1186/s13048-022-01092-z.
pmid: 36581994
|
[39] |
Ding Y, Jiang Y, Zhu M, et al. Follicular fluid lipidomic profiling reveals potential biomarkers of polycystic ovary syndrome: A pilot study[J]. Front Endocrinol(Lausanne), 2022, 13:960274. doi: 10.3389/fendo.2022.960274.
|
[40] |
Belani MA, Shah P, Banker M, et al. Investigating the potential role of swertiamarin on insulin resistant and non-insulin resistant granulosa cells of poly cystic ovarian syndrome patients[J]. J Ovarian Res, 2023, 16(1):55. doi: 10.1186/s13048-023-01126-0.
pmid: 36932437
|
[41] |
郭禹含. YAP1调控PPAR-γ通路在PCOS患者颗粒细胞脂质代谢异常中的作用研究[D]. 郑州: 郑州大学, 2022.
|
[42] |
Di F, Liu J, Li S, et al. Activating transcriptional factor 4 correlated with obesity and insulin resistance in polycystic ovary syndrome[J]. Gynecol Endocrinol, 2019, 35(4):351-355. doi: 10.1080/09513590.2018.1527307.
pmid: 30382797
|
[43] |
Liu Q, Jiang J, Shi Y, et al. Apelin/Apelin receptor: A new therapeutic target in Polycystic Ovary Syndrome[J]. Life Sci, 2020, 260:118310. doi: 10.1016/j.lfs.2020.118310.
|
[44] |
Bongrani A, Mellouk N, Ramé C, et al. Vaspin, a novel adipokine in woman granulosa cells physiology and PCOS pathogenesis?[J]. J Endocrinol, 2021, 249(1):57-70. doi: 10.1530/JOE-20-0550.
pmid: 33608490
|
[45] |
Li X, Zhu Q, Wang W, et al. Elevated chemerin induces insulin resistance in human granulosa-lutein cells from polycystic ovary syndrome patients[J]. FASEB J, 2019, 33(10):11303-11313. doi: 10.1096/fj.201802829R.
pmid: 31311314
|
[46] |
Kumariya S, Ubba V, Jha RK, et al. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective[J]. Autophagy, 2021, 17(10):2706-2733. doi: 10.1080/15548627.2021.1938914.
|
[47] |
Xiong W, Lin Y, Xu L, et al. Circulatory microRNA 23a and microRNA 23b and polycystic ovary syndrome (PCOS): the effects of body mass index and sex hormones in an Eastern Han Chinese population[J]. J Ovarian Res, 2017, 10(1):10. doi: 10.1186/s13048-016-0298-8.
pmid: 28193283
|