[1] |
Ding N, Harlow SD, Randolph JF Jr, et al. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary[J]. Hum Reprod Update, 2020, 26(5):724-752. doi: 10.1093/humupd/dmaa018.
pmid: 32476019
|
[2] |
Holder C, Cohen Hubal EA, Luh J, et al. Systematic evidence mapping of potential correlates of exposure for per-and poly-fluoroalkyl substances (PFAS) based on measured occurrence in biomatrices and surveys of dietary consumption and product use[J]. Int J Hyg Environ Health, 2024,259:114384. doi: 10.1016/j.ijheh.2024.114384.
|
[3] |
Luo Y, Li X, Li J, et al. Prenatal Exposure of PFAS in Cohorts of Pregnant Women: Identifying the Critical Windows of Vulnerability and Health Implications[J]. Environ Sci Technol, 2024, 58(31):13624-13635. doi: 10.1021/acs.est.4c00453.
|
[4] |
Rosato I, Bonato T, Fletcher T, et al. Estimation of per- and polyfluoroalkyl substances (PFAS) half-lives in human studies: a systematic review and meta-analysis[J]. Environ Res, 2024,242:117743. doi: 10.1016/j.envres.2023.117743.
|
[5] |
Haimbaugh A, Meyer DN, Connell ML, et al. Environmental Exposure to Per- and Polyfluorylalkyl Substances (PFASs) and Reproductive Outcomes in the General Population: A Systematic Review of Epidemiological Studies[J]. Int J Environ Res Public Health, 2024, 21(12):1615. doi: 10.3390/ijerph21121615.
|
[6] |
Schildroth S, Bond JC, Wesselink AK, et al. Associations between per- and polyfluoroalkyl substances (PFAS) and female sexual function in a preconception cohort[J]. Environ Res, 2025,266:120556. doi: 10.1016/j.envres.2024.120556.
|
[7] |
Du G, Hu J, Huang Z, et al. Neonatal and juvenile exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS): Advance puberty onset and kisspeptin system disturbance in female rats[J]. Ecotoxicol Environ Saf, 2019, 167:412-421. doi: 10.1016/j.ecoenv.2018.10.025.
|
[8] |
Rodríguez-Carrillo A, Remy S, Koppen G, et al. PFAS association with kisspeptin and sex hormones in teenagers of the HBM4EU aligned studies[J]. Environ Pollut, 2023,335:122214. doi: 10.1016/j.envpol.2023.122214.
|
[9] |
Zhang P, Qi C, Ma Z, et al. Perfluorooctanoic acid exposure in vivo perturbs mitochondrial metabolic during oocyte maturation[J]. Environ Toxicol, 2022, 37(12):2965-2976. doi: 10.1002/tox.23652.
|
[10] |
Zhou YT, Li R, Li SH, et al. Perfluorooctanoic acid (PFOA) exposure affects early embryonic development and offspring oocyte quality via inducing mitochondrial dysfunction[J]. Environ Int, 2022,167:107413. doi: 10.1016/j.envint.2022.107413.
|
[11] |
Pattarawat P, Zhan T, Fan Y, et al. Exposure to Long- and Short-Chain Per- and Polyfluoroalkyl Substances in Mice and Ovarian-Related Outcomes: An in Vivo and in Vitro Study[J]. Environ Health Perspect, 2025, 133(5):57024. doi: 10.1289/EHP14876.
|
[12] |
Tatarczuch A, Gogola-Mruk J, Kotarska K, et al. Mitochondrial activity and steroid secretion in mouse ovarian granulosa cells are suppressed by a PFAS mixture[J]. Toxicology, 2025,512:154083. doi: 10.1016/j.tox.2025.154083.
|
[13] |
López-Arellano P, López-Arellano K, Luna J, et al. Perfluorooctanoic acid disrupts gap junction intercellular communication and induces reactive oxygen species formation and apoptosis in mouse ovaries[J]. Environ Toxicol, 2019, 34(1):92-98. doi: 10.1002/tox.22661.
pmid: 30277307
|
[14] |
De Los Reyes M, Palomino J, Villagra A, et al. Effect of progesterone on in vitro meiotic maturation of canine oocytes associated with Cx37 and Cx43 gene expression[J]. Theriogenology, 2023, 204:50-57. doi: 10.1016/j.theriogenology.2023.04.005.
|
[15] |
Zhou Y, Li H, Lin C, et al. Perfluorooctanoic acid (PFOA) inhibits the gap junction intercellular communication and induces apoptosis in human ovarian granulosa cells[J]. Reprod Toxicol, 2020, 98:125-133. doi: 10.1016/j.reprotox.2020.09.005.
pmid: 32971237
|
[16] |
Hallberg I, Persson S, Olovsson M, et al. Bovine oocyte exposure to perfluorohexane sulfonate (PFHxS) induces phenotypic, transcriptomic, and DNA methylation changes in resulting embryos in vitro[J]. Reprod Toxicol, 2022, 109:19-30. doi: 10.1016/j.reprotox.2022.02.004.
|
[17] |
Xu X, Zhang X, Chen J, et al. Exploring the molecular mechanisms by which per- and polyfluoroalkyl substances induce polycystic ovary syndrome through in silico toxicogenomic data mining[J]. Ecotoxicol Environ Saf, 2024,275:116251. doi: 10.1016/j.ecoenv.2024.116251.
|
[18] |
Li S, Li G, Lin Y, et al. Association between Perfluoroalkyl Substances in Follicular Fluid and Polycystic Ovary Syndrome in Infertile Women[J]. Toxics, 2024, 12(2):104. doi: 10.3390/toxics12020104.
|
[19] |
Zhang Y, Martin L, Mustieles V, et al. Per- and polyfluoroalkyl substances exposure is associated with polycystic ovary syndrome risk among women attending a fertility clinic[J]. Sci Total Environ, 2024,950:175313. doi: 10.1016/j.scitotenv.2024.175313.
|
[20] |
Wang Z, Fleisch A, Rifas-Shiman SL, et al. Associations of maternal per- and polyfluoroalkyl substance plasma concentrations during pregnancy with offspring polycystic ovary syndrome and related characteristics in project viva[J]. Environ Res, 2025,268:120786. doi: 10.1016/j.envres.2025.120786.
|
[21] |
Zhang S, Tan R, Pan R, et al. Association of Perfluoroalkyl and Polyfluoroalkyl Substances With Premature Ovarian Insufficiency in Chinese Women[J]. J Clin Endocrinol Metab, 2018, 103(7):2543-2551. doi: 10.1210/jc.2017-02783.
pmid: 29986037
|
[22] |
Tian T, Hao Y, Wang Y, et al. Mixed and single effects of endocrine disrupting chemicals in follicular fluid on likelihood of diminished ovarian reserve: A case-control study[J]. Chemosphere, 2023,330:138727. doi: 10.1016/j.chemosphere.2023.138727.
|
[23] |
Lefebvre T, Fréour T, Ploteau S, et al. Mixtures of persistent organic pollutants and ovarian function in women undergoing IVF[J]. Reprod Biomed Online, 2023, 46(1):129-137. doi: 10.1016/j.rbmo.2022.09.015.
|
[24] |
de Haro-Romero T, Peinado FM, Vela-Soria F, et al. Association between exposure to perfluoroalkyl substances (PFAS) and endometriosis in the ENDEA case-control study[J]. Sci Total Environ, 2024,951:175593. doi: 10.1016/j.scitotenv.2024.175593.
|
[25] |
Matta K, Lefebvre T, Vigneau E, et al. Associations between persistent organic pollutants and endometriosis: A multiblock approach integrating metabolic and cytokine profiling[J]. Environ Int, 2022,158:106926. doi: 10.1016/j.envint.2021.106926.
|
[26] |
Ao J, Zhang R, Huo X, et al. Environmental exposure to legacy and emerging per- and polyfluoroalkyl substances and endometriosis in women of childbearing age[J]. Sci Total Environ, 2024,907:167838. doi: 10.1016/j.scitotenv.2023.167838.
|
[27] |
Ma X, Cui L, Chen L, et al. Parental plasma concentrations of perfluoroalkyl substances and In Vitro fertilization outcomes[J]. Environ Pollut, 2021,269:116159. doi: 10.1016/j.envpol.2020.116159.
|
[28] |
Wang B, Fu J, Gao K, et al. Early pregnancy loss: Do Per- and polyfluoroalkyl substances matter?[J]. Environ Int, 2021,157:106837. doi: 10.1016/j.envint.2021.106837.
|
[29] |
Shen J, Mao Y, Zhang H, et al. Exposure of women undergoing in-vitro fertilization to per-and polyfluoroalkyl substances: Evidence on negative effects on fertilization and high-quality embryos[J]. Environ Pollut, 2024,359:124474. doi: 10.1016/j.envpol.2024.124474.
|
[30] |
Hong A, Zhuang L, Cui W, et al. Per- and polyfluoroalkyl substances (PFAS) exposure in women seeking in vitro fertilization-embryo transfer treatment (IVF-ET) in China: Blood-follicular transfer and associations with IVF-ET outcomes[J]. Sci Total Environ, 2022, 838(Pt 3):156323. doi: 10.1016/j.scitotenv.2022.156323.
|
[31] |
Zeng XW, Bloom MS, Wei F, et al. Perfluoroalkyl Acids in Follicular Fluid and Embryo Quality during IVF: A Prospective IVF Cohort in China[J]. Environ Health Perspect, 2023, 131(2):27002. doi: 10.1289/EHP10857.
|
[32] |
Xu J, Wang Q, Jiao X, et al. Association between Perfluorooctanoic Acid-Related Poor Embryo Quality and Metabolite Alterations in Human Follicular Fluid during IVF: A Cohort Study[J]. Environ Health Perspect, 2025, 133(6):67017. doi: 10.1289/EHP15422.
|