[1] |
Aitken RJ, Drevet JR, Moazamian A, et al. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms[J]. Antioxidants(Basel), 2022, 11(2):306. doi: 10.3390/antiox11020306.
|
[2] |
Ashapkin V, Suvorov A, Pilsner JR, et al. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development[J]. Hum Reprod Update, 2023, 29(1):24-44.doi: 10.1093/humupd/dmac033.
|
[3] |
Brandt JS, Cruz Ithier MA, Rosen T, et al. Advanced paternal age, infertility, and reproductive risks: A review of the literature[J]. Prenat Diagn, 2019, 39(2):81-87. doi: 10.1002/pd.5402.
|
[4] |
Ngo V, Duennwald ML. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease[J]. Antioxidants(Basel), 2022, 11(12):2345. doi: 10.3390/antiox11122345.
|
[5] |
Yu F, Chen C, Liu W, et al. Longevity Humans Have Youthful Erythrocyte Function and Metabolic Signatures[J]. Aging Cell, 2025, 24(5):e14482. doi: 10.1111/acel.14482.
|
[6] |
Machado-Neves M. Effect of heavy metals on epididymal morphology and function: An integrative review[J]. Chemosphere, 2022, 291(Pt 2):133020. doi: 10.1016/j.chemosphere.2021.133020.
|
[7] |
Szabó A, Váncsa S, Hegyi P, et al. Lifestyle-, environmental-, and additional health factors associated with an increased sperm DNA fragmentation: a systematic review and meta-analysis[J]. Reprod Biol Endocrinol, 2023, 21(1):5. doi: 10.1186/s12958-023-01054-0.
|
[8] |
Cheng J, Yang L, Zhang Z, et al. Diquat causes mouse testis injury through inducing heme oxygenase-1-mediated ferroptosis in spermatogonia[J]. Ecotoxicol Environ Saf, 2024,280:116562. doi: 10.1016/j.ecoenv.2024.116562.
|
[9] |
Chi A, Yang B, Dai H, et al. Stem Leydig cells support macrophage immunological homeostasis through mitochondrial transfer in mice[J]. Nat Commun, 2024, 15(1):2120. doi: 10.1038/s41467-024-46190-2.
|
[10] |
Xi H, Shan W, Li M, et al. Trehalose attenuates testicular aging by activating autophagy and improving mitochondrial quality[J]. Andrology, 2025, 13(4):911-920. doi: 10.1111/andr.13746.
|
[11] |
Cheng J, Xu J, Gu Y, et al. Melatonin ameliorates 10-hydroxycamptothecin-induced oxidative stress and apoptosis via autophagy-regulated p62/Keap1/Nrf2 pathway in mouse testicular cells[J]. J Pineal Res, 2024, 76(4):e12959. doi: 10.1111/jpi.12959.
|
[12] |
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response[J]. J Biol Chem, 2021, 297(3):101077. doi: 10.1016/j.jbc.2021.101077.
|
[13] |
Xiong Y, Yu C, Zhang Q. Ubiquitin-Proteasome System-Regulated Protein Degradation in Spermatogenesis[J]. Cells, 2022, 11(6):1058. doi: 10.3390/cells11061058.
|
[14] |
Smith TB, Baker MA, Connaughton HS, et al. Functional deletion of Txndc2 and Txndc3 increases the susceptibility of spermatozoa to age-related oxidative stress[J]. Free Radic Biol Med, 2013, 65:872-881. doi: 10.1016/j.freeradbiomed.2013.05.021.
|
[15] |
Noblanc A, Klaassen A, Robaire B. The Exacerbation of Aging and Oxidative Stress in the Epididymis of Sod1 Null Mice[J]. Antioxidants(Basel), 2020, 9(2):151. doi: 10.3390/antiox9020151.
|
[16] |
Gureev AP, Andrianova NV, Pevzner IB, et al. Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats[J]. FEBS J, 2022, 289(18):5697-5713. doi: 10.1111/febs.16451.
pmid: 35373508
|
[17] |
Milekic MH, Xin Y, O'Donnell A, et al. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behav ior and dysregulated gene expression[J]. Mol Psychiatry, 2015, 20(8):995-1001. doi: 10.1038/mp.2014.84.
|
[18] |
Ford WC, North K, Taylor H, et al. Increasing paternal age is associated with delayed conception in a large population of fertile couples: evidence for declining fecundity in older men. The ALSPAC Study Team (Avon Longitudinal Study of Pregnancy and Childhood)[J]. Hum Reprod, 2000, 15(8):1703-1708. doi: 10.1093/humrep/15.8.1703.
pmid: 10920089
|
[19] |
Vogiatzi P, Pouliakis A, Sakellariou M, et al. Male Age and Progressive Sperm Motility Are Critical Factors Affecting Embryological and Clinical Outcomes in Oocyte Donor ICSI Cycles[J]. Reprod Sci, 2022, 29(3):883-895. doi: 10.1007/s43032-021-00801-1.
|
[20] |
Kaufman JM, Lapauw B, Mahmoud A, et al. Aging and the Male Reproductive System[J]. Endocr Rev, 2019, 40(4):906-972. doi: 10.1210/er.2018-00178.
|
[21] |
El Kattawy HA, Abozaid ER, Abdullah DM. Humanin Ameliorates Late-onset Hypogonadism in Aged Male Rats[J]. Curr Mol Pharmacol, 2022, 15(7):996-1008. doi: 10.2174/1874467215666220127115602.
pmid: 35086467
|
[22] |
Yin Z, Tian L, Kou W, et al. Xiyangshen Sanqi Danshen granules attenuated D-gal-induced C57BL/6J mouse aging through the AMPK/SIRT1 signaling pathway[J]. Phytomedicine, 2025,136:156213. doi: 10.1016/j.phymed.2024.156213.
|
[23] |
Cui L, Nie X, Guo Y, et al. Single-cell transcriptomic atlas of the human testis across the reproductive lifespan[J]. Nat Aging, 2025, 5(4):658-674. doi: 10.1038/s43587-025-00824-2.
|
[24] |
Matzkin ME, Calandra RS, Rossi SP, et al. Hallmarks of Testicular Aging: The Challenge of Anti-Inflammatory and Antioxidant Therapies Using Natural and/or Pharmacological Compounds to Improve the Physiopathological Status of the Aged Male Gonad[J]. Cells, 2021, 10(11):3114. doi: 10.3390/cells10113114.
|