Journal of International Reproductive Health/Family Planning ›› 2022, Vol. 41 ›› Issue (5): 425-429.doi: 10.12280/gjszjk.20220245
• Review • Previous Articles Next Articles
PEI Jiao-jiao, HUANG Chao-lin, CHEN Jiao()
Received:
2022-05-11
Published:
2022-09-15
Online:
2022-10-12
Contact:
CHEN Jiao
E-mail:cqmuchenjiao@hotmail.com
PEI Jiao-jiao, HUANG Chao-lin, CHEN Jiao. Research Progress of Ferroptosis and Placental Diseases[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 425-429.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1):81-90. doi: 10.1038/nchembio.2238.
doi: 10.1038/nchembio.2238 pmid: 27842066 |
[2] |
Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2):107-125. doi: 10.1038/s41422-020-00441-1.
doi: 10.1038/s41422-020-00441-1 pmid: 33268902 |
[3] |
Kajiwara K, Beharier O, Chng CP, et al. Ferroptosis induces membrane blebbing in placental trophoblasts[J]. J Cell Sci, 2022, 135(5):jcs255737. doi: 10.1242/jcs.255737.
doi: 10.1242/jcs.255737 |
[4] |
Delhaes F, Giza SA, Koreman T, et al. Altered maternal and placental lipid metabolism and fetal fat development in obesity: Current knowledge and advances in non-invasive assessment[J]. Placenta, 2018, 69:118-124. doi: 10.1016/j.placenta.2018.05.011.
doi: S0143-4004(18)30255-8 pmid: 29907450 |
[5] |
Lee JY, Kim WK, Bae KH, et al. Lipid Metabolism and Ferroptosis[J]. Biology(Basel), 2021, 10(3):184. doi: 10.3390/biology10030184.
doi: 10.3390/biology10030184 |
[6] |
Sangkhae V, Nemeth E. Placental iron transport: The mechanism and regulatory circuits[J]. Free Radic Biol Med, 2019, 133:254-261. doi: 10.1016/j.freeradbiomed.2018.07.001.
doi: 10.1016/j.freeradbiomed.2018.07.001 URL |
[7] |
Guo L, Zhang D, Liu S, et al. Maternal iron supplementation during pregnancy affects placental function and iron status in offspring[J]. J Trace Elem Med Biol, 2022, 71:126950. doi: 10.1016/j.jtemb.2022.126950.
doi: 10.1016/j.jtemb.2022.126950 URL |
[8] |
Conrad M, Pratt DA. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019, 15(12):1137-1147. doi: 10.1038/s41589-019-0408-1.
doi: 10.1038/s41589-019-0408-1 pmid: 31740834 |
[9] |
Shah R, Shchepinov MS, Pratt DA. Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis[J]. ACS Cent Sci, 2018, 4(3):387-396. doi: 10.1021/acscentsci.7b00589.
doi: 10.1021/acscentsci.7b00589 URL |
[10] |
Zhou N, Bao J. FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations[J]. Database(Oxford), 2020, 2020:baaa021. doi: 10.1093/database/baaa021.
doi: 10.1093/database/baaa021 |
[11] |
Forcina GC, Dixon SJ. GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis[J]. Proteomics, 2019, 19(18):e1800311. doi: 10.1002/pmic.201800311.
doi: 10.1002/pmic.201800311 |
[12] |
Beharier O, Kajiwara K, Sadovsky Y. Ferroptosis, trophoblast lipotoxic damage, and adverse pregnancy outcome[J]. Placenta, 2021, 108:32-38. doi: 10.1016/j.placenta.2021.03.007.
doi: 10.1016/j.placenta.2021.03.007 pmid: 33812183 |
[13] |
Murakami M, Nakatani Y, Atsumi GI, et al. Regulatory Functions of Phospholipase A2[J]. Crit Rev Immunol, 2017, 37(2/3/4/5/6):127-195. doi: 10.1615/CritRevImmunol.v37.i2-6.20.
doi: 10.1615/CritRevImmunol.v37.i2-6.20 |
[14] |
Beharier O, Tyurin VA, Goff JP, et al. PLA2G6 guards placental trophoblasts against ferroptotic injury[J]. Proc Natl Acad Sci U S A, 2020, 117(44):27319-27328. doi: 10.1073/pnas.2009201117.
doi: 10.1073/pnas.2009201117 pmid: 33087576 |
[15] |
Sun WY, Tyurin VA, Mikulska-Ruminska K, et al. Phospholipase iPLA(2)β averts ferroptosis by eliminating a redox lipid death signal[J]. Nat Chem Biol, 2021, 17(4):465-476. doi: 10.1038/s41589-020-00734-x.
doi: 10.1038/s41589-020-00734-x URL |
[16] |
Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress[J]. Circ Res, 2020, 126(4):439-452. doi: 10.1161/CIRCRESAHA.119.315767.
doi: 10.1161/CIRCRESAHA.119.315767 pmid: 31852393 |
[17] |
Yu H, Zhang Y, Liu M, et al. SIRT3 deficiency affects the migration, invasion, tube formation and necroptosis of trophoblast and is implicated in the pathogenesis of preeclampsia[J]. Placenta, 2022, 120:1-9. doi: 10.1016/j.placenta.2022.01.014.
doi: 10.1016/j.placenta.2022.01.014 pmid: 35150983 |
[18] |
Alvarez SW, Sviderskiy VO, Terzi EM, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis[J]. Nature, 2017, 551(7682):639-643. doi: 10.1038/nature24637.
doi: 10.1038/nature24637 URL |
[19] |
Yang Y, Luo M, Zhang K, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma[J]. Nat Commun, 2020, 11(1):433. doi: 10.1038/s41467-020-14324-x.
doi: 10.1038/s41467-020-14324-x |
[20] |
Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ, 2020, 27(2):662-675. doi: 10.1038/s41418-019-0380-z.
doi: 10.1038/s41418-019-0380-z pmid: 31273299 |
[21] |
Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26(11):2284-2299. doi: 10.1038/s41418-019-0299-4.
doi: 10.1038/s41418-019-0299-4 pmid: 30737476 |
[22] |
Burton GJ, Cindrova-Davies T, Yung HW, et al. HYPOXIA AND REPRODUCTIVE HEALTH: Oxygen and development of the human placenta[J]. Reproduction, 2021, 161(1):F53-F65. doi: 10.1530/REP-20-0153.
doi: 10.1530/REP-20-0153 URL |
[23] |
Wray S, Alruwaili M, Prendergast C. HYPOXIA AND REPRODUCTIVE HEALTH: Hypoxia and labour[J]. Reproduction, 2021, 161(1):F67-F80. doi: 10.1530/REP-20-0327.
doi: 10.1530/REP-20-0327 pmid: 33112773 |
[24] |
Schoots MH, Gordijn SJ, Scherjon SA, et al. Oxidative stress in placental pathology[J]. Placenta, 2018, 69:153-161. doi: 10.1016/j.placenta.2018.03.003.
doi: S0143-4004(18)30070-5 pmid: 29622278 |
[25] |
Turco MY, Gardner L, Kay RG, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation[J]. Nature, 2018, 564(7735):263-267. doi: 10.1038/s41586-018-0753-3.
doi: 10.1038/s41586-018-0753-3 URL |
[26] |
Taysi S, Tascan AS, Ugur MG, et al. Radicals, Oxidative/Nitrosative Stress and Preeclampsia[J]. Mini Rev Med Chem, 2019, 19(3):178-193. doi: 10.2174/1389557518666181015151350.
doi: 10.2174/1389557518666181015151350 pmid: 30324879 |
[27] |
Guerby P, Tasta O, Swiader A, et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia[J]. Redox Biol, 2021, 40:101861. doi: 10.1016/j.redox.2021.101861.
doi: 10.1016/j.redox.2021.101861 URL |
[28] |
Zhang H, He Y, Wang JX, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biol, 2020, 29:101402. doi: 10.1016/j.redox.2019.101402.
doi: 10.1016/j.redox.2019.101402 URL |
[29] |
Jones JG. Hepatic glucose and lipid metabolism[J]. Diabetologia, 2016, 59(6):1098-1103. doi: 10.1007/s00125-016-3940-5.
doi: 10.1007/s00125-016-3940-5 pmid: 27048250 |
[30] |
Zheng Y, Hu Q, Wu J. Adiponectin ameliorates placental injury in gestational diabetes mice by correcting fatty acid oxidation/peroxide imbalance-induced ferroptosis via restoration of CPT-1 activity[J]. Endocrine, 2022, 75(3):781-793. doi: 10.1007/s12020-021-02933-5.
doi: 10.1007/s12020-021-02933-5 URL |
[31] |
Han D, Jiang L, Gu X, et al. SIRT3 deficiency is resistant to autophagy-dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels[J]. J Cell Physiol, 2020, 235(11):8839-8851. doi: 10.1002/jcp.29727.
doi: 10.1002/jcp.29727 pmid: 32329068 |
[32] |
Yang XD, Yang YY. Ferroptosis as a Novel Therapeutic Target for Diabetes and Its Complications[J]. Front Endocrinol(Lausanne), 2022, 13:853822. doi: 10.3389/fendo.2022.853822.
doi: 10.3389/fendo.2022.853822 |
[33] |
Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction[J]. Am J Obstet Gynecol, 2018, 218(2S):S745-S761. doi: 10.1016/j.ajog.2017.11.577.
doi: 10.1016/j.ajog.2017.11.577 |
[34] |
Akison LK, Nitert MD, Clifton VL, et al. Review: Alterations in placental glycogen deposition in complicated pregnancies: Current preclinical and clinical evidence[J]. Placenta, 2017, 54:52-58. doi: 10.1016/j.placenta.2017.01.114.
doi: S0143-4004(17)30116-9 pmid: 28117144 |
[35] |
Miller SL, Yawno T, Alers NO, et al. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction[J]. J Pineal Res, 2014, 56(3):283-294. doi: 10.1111/jpi.12121.
doi: 10.1111/jpi.12121 pmid: 24456220 |
[36] |
Zhang Y, Zhou J, Li MQ, et al. MicroRNA-184 promotes apoptosis of trophoblast cells via targeting WIG1 and induces early spontaneous abortion[J]. Cell Death Dis, 2019, 10(3):223. doi: 10.1038/s41419-019-1443-2.
doi: 10.1038/s41419-019-1443-2 pmid: 30833572 |
[37] |
Meihe L, Shan G, Minchao K, et al. The Ferroptosis-NLRP1 Inflammasome: The Vicious Cycle of an Adverse Pregnancy[J]. Front Cell Dev Biol, 2021, 9:707959. doi: 10.3389/fcell.2021.707959.
doi: 10.3389/fcell.2021.707959 URL |
[38] |
Stefanovic V, Andersson S, Vento M. Oxidative stress-Related spontaneous preterm delivery challenges in causality determination, prevention and novel strategies in reduction of the sequelae[J]. Free Radic Biol Med, 2019, 142:52-60. doi: 10.1016/j.freeradbiomed.2019.06.008.
doi: 10.1016/j.freeradbiomed.2019.06.008 URL |
[39] |
Li Q, Han X, Lan X, et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain[J]. JCI Insight, 2017, 2(7):e90777. doi: 10.1172/jci.insight.90777.
doi: 10.1172/jci.insight.90777 URL |
[1] | GAO Xiao-li, SU Jing, LI Zeng-yan, LI Jie. Clinical Analysis of 14 Cases of Pregnancy-Associated Hemolytic Uremic Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 458-461. |
[2] | LI Xuan-ang, WANG Ting-ting, XIANG Shan, ZHAO Shuai, LIAN Fang. Research Progress of Ferroptosis in Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 425-429. |
[3] | LIU Fang-lei, FENG Xiao-ling. The Correlation between Thyroid-Related Hormones and Preeclampsia [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 348-352. |
[4] | LIN Kai-xuan, WEN Hao, YANG Fu-yan. Visual Analysis of Correlative Studies on Prediction Model of Early-Onset Preeclampsia Based on Knowledge Graph [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 101-107. |
[5] | YANG Yu-ting, HUI Ling, CHEN Xue, ZHANG Chuan, TIAN Xin-yuan, ZHOU Bing-bo. Genetic Variation Analysis of A Prenatal Fetus with Silver-Russell Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 371-376. |
[6] | SONG Qiu-jin, QIAN Xiao-hong, CHEN Qian. Progress on the Relationship between Gut Microbiota and Pregnancy Complications [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 409-413. |
[7] | HE Yue, CUI Hong-mei. Research Progress of Ferroptosis in Obstetric Diseases [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 414-418. |
[8] | GAO Ya-ting, MA Jian-hong, MA Yi-tong, LIU Chang. Progress on the Relationship between Ferroptosis and Cervical Cancer [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 436-440. |
[9] | CHEN Lu, YANG Chun-xia, SUN Yan, LI Feng, XUE Tong-min, LU Dan. Effect of Iron Overload and Ferroptosis on the Reproductive Function of Endometriosis Patients [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 261-264. |
[10] | LI Meng, WU Ya-mei, LI Jia-wen, ZHENG Xiao-min, YING Hao, HUANG Lu. Application of Placenta-Derived Exosomes in the Diagnosis of Fetal Growth Restriction [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 156-160. |
[11] | CHEN Cheng, FENG Xiao-ling. The Relationship between Interleukin-1β and Pregnancy and Related Diseases [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 161-166. |
[12] | SU Jing, GAO Xiao-li, LI Zeng-yan. Cervical Insufficiency and Cervical Cerclage [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 514-518. |
[13] | GAO Qian-qian, FENG Xiao-ling. CircRNA and Pregnancy-Related Diseases [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 430-435. |
[14] | LI Shan-shan, SHEN Yong-mei, WEI Zhuo, CHEN Ling, YAO Li-ying, ZHANG Lei, LI Wen, CAO Jia-song, CHANG Ying. A Case of Confined Placental Mosaicism of Trisomy 16 Combined with Fetal Growth Restriction [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(3): 207-209. |
[15] | REN Jun-li, YANG Liu, LI Yan, HUANG Li-juan, LI Xue-jiao, LI Hai-hong. Prevalence of Retinopathy of Prematurity in China: A Meta-Analysis [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 462-467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||