Journal of International Reproductive Health/Family Planning ›› 2024, Vol. 43 ›› Issue (1): 38-42.doi: 10.12280/gjszjk.20230372
• Review • Previous Articles Next Articles
LIU Yi-ran, FENG Rui-zhi, QIAN Yun△()
Received:
2023-09-05
Published:
2024-01-15
Online:
2024-01-31
LIU Yi-ran, FENG Rui-zhi, QIAN Yun. Research Progress on Post-Translational Modification in Polycystic Ovary Syndrome[J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 38-42.
Add to citation manager EndNote|Ris|BibTeX
[1] | Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies[J]. Mol Metab, 2020, 35:100937. doi: 10.1016/j.molmet.2020.01.001. |
[2] |
Tran TQ, Lowman XH, Kong M. Molecular Pathways: Metabolic Control of Histone Methylation and Gene Expression in Cancer[J]. Clin Cancer Res, 2017, 23(15):4004-4009. doi: 10.1158/1078-0432.CCR-16-2506.
pmid: 28404599 |
[3] | Zhong Q, Xiao X, Qiu Y, et al. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications[J]. MedComm(2020), 2023, 4(3):e261. doi: 10.1002/mco2.261. |
[4] | Pan L, Feng F, Wu J, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells[J]. Pharmacol Res, 2022, 181:106270. doi: 10.1016/j.phrs.2022.106270. |
[5] |
Yang Z, Yan C, Ma J, et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma[J]. Nat Metab, 2023, 5(1):61-79. doi: 10.1038/s42255-022-00710-w.
pmid: 36593272 |
[6] |
Deng L, Chen L, Zhao L, et al. Ubiquitination of Rheb governs growth factor-induced mTORC1 activation[J]. Cell Res, 2019, 29(2):136-150. doi: 10.1038/s41422-018-0120-9.
pmid: 30514904 |
[7] | Xu G, Wu Y, Xiao T, et al. Multiomics approach reveals the ubiquitination-specific processes hijacked by SARS-CoV-2[J]. Signal Transduct Target Ther, 2022, 7(1):312. doi: 10.1038/s41392-022-01156-y. |
[8] |
Kebede AF, Nieborak A, Shahidian LZ, et al. Histone propionylation is a mark of active chromatin[J]. Nat Struct Mol Biol, 2017, 24(12):1048-1056. doi: 10.1038/nsmb.3490.
pmid: 29058708 |
[9] | Zeng J, Aryal RP, Stavenhagen K, et al. Cosmc deficiency causes spontaneous autoimmunity by breaking B cell tolerance[J]. Sci Adv, 2021, 7(41):eabg9118. doi: 10.1126/sciadv.abg9118. |
[10] | Zhu Q, Wang H, Chai S, et al. O-GlcNAcylation promotes tumor immune evasion by inhibiting PD-L1 lysosomal degradation[J]. Proc Natl Acad Sci U S A, 2023, 120(13):e2216796120. doi: 10.1073/pnas.2216796120. |
[11] | Min Z, Long X, Zhao H, et al. Protein Lysine Acetylation in Ovarian Granulosa Cells Affects Metabolic Homeostasis and Clinical Presentations of Women With Polycystic Ovary Syndrome[J]. Front Cell Dev Biol, 2020, 8:567028. doi: 10.3389/fcell.2020.567028. |
[12] | Mao Z, Li T, Zhao H, et al. Methylome and transcriptome profiling revealed epigenetic silencing of LPCAT1 and PCYT1A associated with lipidome alterations in polycystic ovary syndrome[J]. J Cell Physiol, 2021, 236(9):6362-6375. doi: 10.1002/jcp.30309. |
[13] | Liu M, Zhu H, Zhu Y, et al. Guizhi Fuling Wan reduces autophagy of granulosa cell in rats with polycystic ovary syndrome via restoring the PI3K/AKT/mTOR signaling pathway[J]. J Ethnopharmacol, 2021, 270:113821. doi: 10.1016/j.jep.2021.113821. |
[14] | Qiu Z, Dong J, Xue C, et al. Liuwei Dihuang Pills alleviate the polycystic ovary syndrome with improved insulin sensitivity through PI3K/Akt signaling pathway[J]. J Ethnopharmacol, 2020, 250:111965. doi: 10.1016/j.jep.2019.111965. |
[15] |
Wu C, Jiang F, Wei K, et al. Exercise activates the PI3K-AKT signal pathway by decreasing the expression of 5α-reductase type 1 in PCOS rats[J]. Sci Rep, 2018, 8(1):7982. doi: 10.1038/s41598-018-26210-0.
pmid: 29789599 |
[16] | 陈东思. IRS-1及ERK2丝氨酸磷酸化与PCOS患者IR的关系[D]. 青岛: 青岛大学, 2016. |
[17] | Wang Y, Zeng Z, Zhao S, et al. Humanin Alleviates Insulin Resistance in Polycystic Ovary Syndrome: A Human and Rat Model-Based Study[J]. Endocrinology, 2021, 162(8):bqab056. doi: 10.1210/endocr/bqab056. |
[18] | Shen H, Xu X, Fu Z, et al. The interactions of CAP and LYN with the insulin signaling transducer CBL play an important role in polycystic ovary syndrome[J]. Metabolism, 2022, 131:155164. doi: 10.1016/j.metabol.2022.155164. |
[19] |
Wei Y, Wang Z, Wei L, et al. MicroRNA-874-3p promotes testosterone-induced granulosa cell apoptosis by suppressing HDAC1-mediated p53 deacetylation[J]. Exp Ther Med, 2021, 21(4):359. doi: 10.3892/etm.2021.9790.
pmid: 33732332 |
[20] | Eini F, Novin MG, Joharchi K, et al. Intracytoplasmic oxidative stress reverses epigenetic modifications in polycystic ovary syndrome[J]. Reprod Fertil Dev, 2017, 29(12):2313-2323. doi: 10.1071/RD16428. |
[21] |
Hosseini E, Shahhoseini M, Afsharian P, et al. Role of epigenetic modifications in the aberrant CYP19A1 gene expression in polycystic ovary syndrome[J]. Arch Med Sci, 2019, 15(4):887-895. doi: 10.5114/aoms.2019.86060.
pmid: 31360184 |
[22] | Roy S, Abudu A, Salinas I, et al. Androgen-mediated Perturbation of the Hepatic Circadian System Through Epigenetic Modulation Promotes NAFLD in PCOS Mice[J]. Endocrinology, 2022, 163(10):bqac127. doi: 10.1210/endocr/bqac127. |
[23] | Rudnicka E, Suchta K, Grymowicz M, et al. Chronic Low Grade Inflammation in Pathogenesis of PCOS[J]. Int J Mol Sci, 2021, 22(7):3789. doi: 10.3390/ijms22073789. |
[24] |
Guo X, Puttabyatappa M, Thompson RC, et al. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS[J]. Endocrinology, 2019, 160(10):2471-2484. doi: 10.1210/en.2019-00389.
pmid: 31398247 |
[25] | 康亚妮, 毛湛睿, 王昱欢, 等. DNA甲基化标志物PCYT1A在制备诊断PCOS试剂盒中的应用[P]. 上海市:CN202010124607.6. 2020-06-09. |
[26] |
Filippou P, Homburg R. Is foetal hyperexposure to androgens a cause of PCOS?[J]. Hum Reprod Update, 2017, 23(4):421-432. doi: 10.1093/humupd/dmx013.
pmid: 28531286 |
[27] |
Mimouni N, Paiva I, Barbotin AL, et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process[J]. Cell Metab, 2021, 33(3):513-530.e8. doi: 10.1016/j.cmet.2021.01.004.
pmid: 33539777 |
[28] | Li Y, Xiang Y, Song Y, et al. MALAT1 downregulation is associated with polycystic ovary syndrome via binding with MDM2 and repressing P53 degradation[J]. Mol Cell Endocrinol, 2022, 543:111528. doi: 10.1016/j.mce.2021.111528. |
[29] | Liu X, Sun C, Zou K, et al. Novel PGK1 determines SKP2-dependent AR stability and reprograms granular cell glucose metabolism facilitating ovulation dysfunction[J]. EBioMedicine, 2020, 61:103058. doi: 10.1016/j.ebiom.2020.103058. |
[1] | LI An-qi, ZHU Meng-yi, WANG Yu, GAO Jing-shu, WU Xiao-ke. Potential Application of Tanshinone in the Treatment of Polycystic Ovary Syndrome and Mechanism [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 494-500. |
[2] | LEI Rui-xiang, WAN Yi, LI Yu-zi, GUAN De-feng, ZHANG Xue-hong. Association of Circadian Rhythm Disorders with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 501-505. |
[3] | QIAO Xin-yue, TAO Ai-lin, FENG Xiao-ling, CHEN Lu. Research on the Correlation between Polycystic Ovary Syndrome and Anxiety and Depression Disorders [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 506-511. |
[4] | TIAN Dejier, FENG Xiao-ling. Possible Application of Myo-Inositol and D-Chiro-Inositol in Treatment of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 512-517. |
[5] | GAO Zheng, LI Meng-yuan, LI Bo, LIANG Jing-qiao, ZHANG Ya-dong, XU Xin. Efficacy of Chinese Medicine Compound on Abnormal Glucose and Lipid Metabolism in Patients with Obese Polycystic Ovary Syndrome: A Meta Analysis [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 368-377. |
[6] | ZHU Hai-ying, QI Dan-dan, SUN Ping-ping, SUN Na, LUAN Su-xian. A Case Report of Ovarian Hyperstimulation Syndrome Combined with Ovarian Torsion after Assisted Reproductive Technology Assisted Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 401-405. |
[7] | LI Xuan-ang, WANG Ting-ting, XIANG Shan, ZHAO Shuai, LIAN Fang. Research Progress of Ferroptosis in Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 425-429. |
[8] | LI Dan-ping, LIAN Fang, XIANG Shan. New Progress in the Mechanism of Metformin Therapy for Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 343-347. |
[9] | SHI Bai-chao, CHANG Hui, WANG Yu, LU Feng-juan, WANG Kai-yue, GUAN Mu-xin, MA Liang, WU Xiao-ke. The Role of Gut Microbiota in Patients with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 238-242. |
[10] | YE Lin, HOU Zhi-jin, MENG Yu-shi. Research Progress of Sirolimus in the Field of Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 132-137. |
[11] | DAI He-qi, MAO Fei, FENG Rui-zhi, QIAN Yun. The Role of LncRNA as CeRNA in Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 144-149. |
[12] | ZHEN Jia, ZHAO Zi-yuan, WANG Zi-lu, SHI Wei, XU Li. Granulosa Cell Autophagy in Pathophysiological Mechanism of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 150-154. |
[13] | REN Lu-lu, REN Wen-chao, ZHANG Xiao-xuan, REN Chun-e. Pathways of Insulin Resistance in Ovarian Granulosa Cells of Polycystic Ovary Syndrome Patients [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 32-37. |
[14] | ZHOU Xin-yue, LI Ning, WEI Lin-fei, ZHANG Xue-hong. The Relationship between Intestinal Flora, Intestinal Metabolites and Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 42-47. |
[15] | QU Hui-ying, GUI Wen-wu. Low-Grade Chronic Inflammation in Polycystic Ovary Syndrome Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 48-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||