Journal of International Reproductive Health/Family Planning ›› 2023, Vol. 42 ›› Issue (6): 492-497.doi: 10.12280/gjszjk.20230216
• Review • Previous Articles Next Articles
XIANG Chun-rong, DENG Zhi-min, DAI Fang-fang, CHENG Yan-xiang()
Received:
2023-05-26
Published:
2023-11-15
Online:
2023-11-09
Contact:
CHENG Yan-xiang
E-mail:yanxiangCheng@whu.edu.cn
XIANG Chun-rong, DENG Zhi-min, DAI Fang-fang, CHENG Yan-xiang. Clinical Studies of MSCs and MSCs-Derived Exosomes in Premature Ovarian Insufficiency, and Research Progress[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 492-497.
Add to citation manager EndNote|Ris|BibTeX
[1] | Ishizuka B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI)[J]. Front Endocrinol (Lausanne), 2021, 12:626924. doi: 10.3389/fendo.2021.626924. |
[2] | Han QF, Li WJ, Hu KS, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer[J]. Mol Cancer, 2022, 21(1):207. doi: 10.1186/s12943-022-01671-0. |
[3] |
Yang M, Lin L, Sha C, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN[J]. Lab Invest, 2020, 100(3):342-352. doi: 10.1038/s41374-019-0321-y.
pmid: 31537899 |
[4] |
El-Derany MO, Said RS, El-Demerdash E. Bone Marrow-Derived Mesenchymal Stem Cells Reverse Radiotherapy-Induced Premature Ovarian Failure: Emphasis on Signal Integration of TGF-β, Wnt/β-Catenin and Hippo Pathways[J]. Stem Cell Rev Rep, 2021, 17(4):1429-1445. doi: 10.1007/s12015-021-10135-9.
pmid: 33594662 |
[5] | Edessy M, Hosni H, Shady Y, et al. Autologous stem cells therapy, The first baby of idiopathic premature ovarian failure[J]. Acta Med Int, 2016, 3(1):19-23. doi: 10.5530/ami.2016.1.7. |
[6] | Igboeli P, El Andaloussi A, Sheikh U, et al. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature[J]. J Med Case Rep, 2020, 14(1):108. doi: 10.1186/s13256-020-02426-5. |
[7] |
Sun B, Ma Y, Wang F, et al. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis[J]. Stem Cell Res Ther, 2019, 10(1):360. doi: 10.1186/s13287-019-1442-3.
pmid: 31783913 |
[8] |
Shen J, Cao D, Sun JL. Ability of human umbilical cord mesenchymal stem cells to repair chemotherapy-induced premature ovarian failure[J]. World J Stem Cells, 2020, 12(4):277-287. doi: 10.4252/wjsc.v12.i4.277.
pmid: 32399136 |
[9] | Zhu SF, Hu HB, Xu HY, et al. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries[J]. J Cell Mol Med, 2015, 19(9):2108-2117. doi: 10.1111/jcmm.12571. |
[10] |
Lu X, Bao H, Cui L, et al. hUMSC transplantation restores ovarian function in POI rats by inhibiting autophagy of theca-interstitial cells via the AMPK/mTOR signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1):268. doi: 10.1186/s13287-020-01784-7.
pmid: 32620136 |
[11] |
Yin N, Wu C, Qiu J, et al. Protective properties of heme oxygenase-1 expressed in umbilical cord mesenchymal stem cells help restore the ovarian function of premature ovarian failure mice through activating the JNK/Bcl-2 signal pathway-regulated autophagy and upregulating the circulating of CD8+CD28- T cells[J]. Stem Cell Res Ther, 2020, 11(1):49. doi: 10.1186/s13287-019-1537-x.
pmid: 32019599 |
[12] | Yan L, Wu Y, Li L, et al. Clinical analysis of human umbilical cord mesenchymal stem cell allotransplantation in patients with premature ovarian insufficiency[J]. Cell Prolif, 2020, 53(12):e12938. doi: 10.1111/cpr.12938. |
[13] |
Hong L, Yan L, Xin Z, et al. Protective effects of human umbilical cord mesenchymal stem cell-derived conditioned medium on ovarian damage[J]. J Mol Cell Biol, 2020, 12(5):372-385. doi: 10.1093/jmcb/mjz105.
pmid: 31742349 |
[14] | Cai JH, Sun YT, Bao S. HucMSCs-exosomes containing miR-21 promoted estrogen production in ovarian granulosa cells via LATS1-mediated phosphorylation of LOXL2 and YAP[J]. Gen Comp Endocrinol, 2022, 321-322:114015. doi: 10.1016/j.ygcen.2022.114015. |
[15] |
Qu Q, Liu L, Cui Y, et al. miR-126-3p containing exosomes derived from human umbilical cord mesenchymal stem cells promote angiogenesis and attenuate ovarian granulosa cell apoptosis in a preclinical rat model of premature ovarian failure[J]. Stem Cell Res Ther, 2022, 13(1):352. doi: 10.1186/s13287-022-03056-y.
pmid: 35883161 |
[16] |
Yin N, Zhao W, Luo Q, et al. Restoring Ovarian Function With Human Placenta-Derived Mesenchymal Stem Cells in Autoimmune-Induced Premature Ovarian Failure Mice Mediated by Treg Cells and Associated Cytokines[J]. Reprod Sci, 2018, 25(7):1073-1082. doi: 10.1177/1933719117732156.
pmid: 28954601 |
[17] | Ding C, Zou Q, Wu Y, et al. EGF released from human placental mesenchymal stem cells improves premature ovarian insufficiency via NRF2/HO-1 activation[J]. Aging (Albany NY), 2020, 12(3):2992-3009. doi: 10.18632/aging.102794. |
[18] | Seok J, Park H, Choi JH, et al. Placenta-Derived Mesenchymal Stem Cells Restore the Ovary Function in an Ovariectomized Rat Model via an Antioxidant Effect[J]. Antioxidants (Basel), 2020, 9(7):591. doi: 10.3390/antiox9070591. |
[19] | Kim KH, Kim EY, Kim GJ, et al. Human placenta-derived mesenchymal stem cells stimulate ovarian function via miR-145 and bone morphogenetic protein signaling in aged rats[J]. Stem Cell Res Ther, 2020, 11(1):472. doi: 10.1186/s13287-020-01988-x. |
[20] | Chen S, Wang Y, Liao L, et al. Similar Repair Effects of Human Placenta, Bone Marrow Mesenchymal Stem Cells, and Their Exosomes for Damaged SVOG Ovarian Granulosa Cells[J]. Stem Cells Int, 2020, 2020:8861557. doi: 10.1155/2020/8861557. |
[21] |
Ding C, Li H, Wang Y, et al. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics[J]. Stem Cell Res Ther, 2017, 8(1):173. doi: 10.1186/s13287-017-0613-3.
pmid: 28750654 |
[22] |
Ling L, Hou J, Liu D, et al. Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI)[J]. Stem Cell Res Ther, 2022, 13(1):79. doi: 10.1186/s13287-022-02759-6.
pmid: 35197118 |
[23] | Ding C, Qian C, Hou S, et al. Exosomal miRNA-320a Is Released from hAMSCs and Regulates SIRT4 to Prevent Reactive Oxygen Species Generation in POI[J]. Mol Ther Nucleic Acids, 2020, 21:37-50. doi: 10.1016/j.omtn.2020.05.013. |
[24] | Xiao GY, Liu IH, Cheng CC, et al. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy[J]. PLoS One, 2014, 9(9):e106538. doi: 10.1371/journal.pone.0106538. |
[25] |
Huang B, Ding C, Zou Q, et al. Human Amniotic Fluid Mesenchymal Stem Cells Improve Ovarian Function During Physiological Aging by Resisting DNA Damage[J]. Front Pharmacol, 2020, 11:272. doi: 10.3389/fphar.2020.00272.
pmid: 32273842 |
[26] | Geng Z, Chen H, Zou G, et al. Human Amniotic Fluid Mesenchymal Stem Cell-Derived Exosomes Inhibit Apoptosis in Ovarian Granulosa Cell via miR-369-3p/YAF2/PDCD5/p53 Pathway[J]. Oxid Med Cell Longev, 2022, 2022:3695848. doi: 10.1155/2022/3695848. |
[27] |
Thabet E, Yusuf A, Abdelmonsif DA, et al. Extracellular vesicles miRNA-21: a potential therapeutic tool in premature ovarian dysfunction[J]. Mol Hum Reprod, 2020, 26(12):906-919. doi: 10.1093/molehr/gaaa068.
pmid: 33049041 |
[28] | Xiao GY, Cheng CC, Chiang YS, et al. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy[J]. Sci Rep, 2016, 6:23120. doi: 10.1038/srep23120. |
[29] | Su J, Ding L, Cheng J, et al. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency[J]. Hum Reprod, 2016, 31(5):1075-1086. doi: 10.1093/humrep/dew041. |
[30] | 白塔吉, 马玉珍. 脂肪间充质干细胞对小鼠化疗性卵巢功能不全的治疗作用及机制研究[J]. 中国妇产科临床杂志, 2022, 23(6):617-621. doi: 10.13390/j.issn.1672-1861.2022.06.015. |
[31] | Sen Halicioglu B, Saadat K, Tuglu MI. Adipose-Derived Mesenchymal Stem Cell Transplantation in Chemotherapy-Induced Premature Ovarian Insufficiency: the Role of Connexin and Pannexin[J]. Reprod Sci, 2022, 29(4):1316-1331. doi: 10.1007/s43032-021-00718-9. |
[32] |
Çil N, Mete GA. The effect of adipose-derived mesenchymal stem cell treatment on mTOR and p-mTOR expression in ovarian damage due to cyclophosphomide[J]. Reprod Toxicol, 2021, 103:71-78. doi: 10.1016/j.reprotox.2021.06.003.
pmid: 34098046 |
[33] |
Song K, Cai H, Zhang D, et al. Effects of human adipose-derived mesenchymal stem cells combined with estrogen on regulatory T cells in patients with premature ovarian insufficiency[J]. Int Immunopharmacol, 2018, 55:257-262. doi: 10.1016/j.intimp.2017.12.026.
pmid: 29288925 |
[34] |
Huang B, Lu J, Ding C, et al. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD[J]. Stem Cell Res Ther, 2018, 9(1):216. doi: 10.1186/s13287-018-0953-7.
pmid: 30092819 |
[35] | Yamchi NN, Rahbarghazi R, Bedate AM, et al. Menstrual blood CD146+ mesenchymal stem cells reduced fibrosis rate in the rat model of premature ovarian failure[J]. Cell Biochem Funct, 2021, 39(8):998-1008. doi: 10.1002/cbf.3669. |
[36] |
Fu X, Zhang S, Li T, et al. Menstrual blood-derived endometrial stem cells ameliorate the viability of ovarian granulosa cells injured by cisplatin through activating autophagy[J]. Reprod Toxicol, 2022, 110:39-48. doi: 10.1016/j.reprotox.2022.03.012.
pmid: 35346788 |
[37] | 徐焱焱, 颜贝, 王锐, 等. 经血间充质干细胞通过IGF-1信号通路改善小鼠卵巢早衰[J]. 山东大学学报(医学版), 2020, 58(2):13-20. |
[38] |
Zhang S, Huang B, Su P, et al. Concentrated exosomes from menstrual blood-derived stromal cells improves ovarian activity in a rat model of premature ovarian insufficiency[J]. Stem Cell Res Ther, 2021, 12(1):178. doi: 10.1186/s13287-021-02255-3.
pmid: 33712079 |
[1] | YANG Qin, WANG Han-ting, CAO Yuan-yuan, ZHOU Jun, WANG Gui-ling. Effect of Resveratrol on the Function of Ovarian Granulose Cells [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 524-528. |
[2] | WANG Dong-xue, BAO Li-li, LIU Shan, YANG Bo. Effect of Modified Flexible Antagonist Protocol on the Outcome of COH in Patients with Normal Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 185-189. |
[3] | GAO Zhao-yang, ZHANG Ning-qing, CHEN Qiong-hua, WU Rong-feng. The Role of CircRNAs in Follicular Granulosa Cells of Patients with Endometriosis Infertility [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 243-248. |
[4] | REN Lu-lu, REN Wen-chao, ZHANG Xiao-xuan, REN Chun-e. Pathways of Insulin Resistance in Ovarian Granulosa Cells of Polycystic Ovary Syndrome Patients [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 32-37. |
[5] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
[6] | LIU Hong-jiang, JIANG Xiao-hua, WEI Zhao-lian. The Application of Mesenchymal Stem Cells and Combined Biomaterial Scaffolds in the Treatment of Intrauterine Adhesions [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 424-430. |
[7] | LIU Xu, YANG Ai-jun, LI Ze-wu, SHI Cheng, LIU Li-jun, KONG Xiao-li, WANG Jing-wen. The Mechanism of Platelet-Rich Plasma on Improving Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 329-333. |
[8] | CHEN Qiu-yan, LU Nan, LIU Jia-yin. Clinical Application of Growth Hormone Supplementation in Non-DOR Patients with Previous IVF/ICSI Failure [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 184-188. |
[9] | YANG Zhi-juan, YAO Ting, HOU Hai-yan. Mitophagy and Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 240-244. |
[10] | ZHU Wen-bin, XU Jing-yu, MA Rui-hong, XIA Tian, LUAN Zu-qian. Research Progress of Brain-Derived Neurotrophic Factor and Female Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 140-144. |
[11] | LI Meng, WU Ya-mei, LI Jia-wen, ZHENG Xiao-min, YING Hao, HUANG Lu. Application of Placenta-Derived Exosomes in the Diagnosis of Fetal Growth Restriction [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 156-160. |
[12] | ZHAO Hai-jun, ZHANG Xi-hui, CHEN Jing, LU Jing, ZHANG Hong-feng, CHANG Wen-liang. Comparison of Three Controlled Ovarian Hyperstimulation Protocols in Advanced-Age Infertile Patients with Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 13-17. |
[13] | ZHANG Yu, XIA Tian. Case Report of Pregnancy in Two Patients with Diminished Ovarian Reserve Treated with Traditional and Western Medicine, and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 460-463. |
[14] | ZHANG Lei, LIANG Lin-lin, FENG Ke, MENG Li, ZHANG Cui-lian. Autophagy in Mechanism of Ovulatory Dysfunction Infertility [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 504-508. |
[15] | YAO Ting, YANG Hong-mei, CUI Li-hua, MENG Qing-fang. Autophagy Participated in Pathological Mechanism of Premature Ovarian Insufficiency [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 313-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||