Journal of International Reproductive Health/Family Planning ›› 2023, Vol. 42 ›› Issue (3): 240-244.doi: 10.12280/gjszjk.20220558
• Review • Previous Articles Next Articles
YANG Zhi-juan, YAO Ting, HOU Hai-yan()
Received:
2022-11-28
Published:
2023-05-15
Online:
2023-05-18
Contact:
HOU Hai-yan
E-mail:houhy2012@hotmail.com
YANG Zhi-juan, YAO Ting, HOU Hai-yan. Mitophagy and Ovarian Function[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 240-244.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Iljas JD, Homer HA. Sirt3 is dispensable for oocyte quality and female fertility in lean and obese mice[J]. FASEB J, 2020, 34(5):6641-6653. doi: 10.1096/fj.202000153R.
doi: 10.1096/fj.202000153R pmid: 32212196 |
[2] |
Gan B. Mitochondrial regulation of ferroptosis[J]. J Cell Biol, 2021, 220(9):e202105043. doi: 10.1083/jcb.202105043.
doi: 10.1083/jcb.202105043 |
[3] |
Fan M, Zhang J, Tsai CW, et al. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex[J]. Nature, 2020, 582(7810):129-133. doi: 10.1038/s41586-020-2309-6.
doi: 10.1038/s41586-020-2309-6 |
[4] |
Bahat A, MacVicar T, Langer T. Metabolism and Innate Immunity Meet at the Mitochondria[J]. Front Cell Dev Biol, 2021, 9:720490. doi: 10.3389/fcell.2021.720490.
doi: 10.3389/fcell.2021.720490 |
[5] |
Adebayo M, Singh S, Singh AP, et al. Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis[J]. FASEB J, 2021, 35(6):e21620. doi: 10.1096/fj.202100067R.
doi: 10.1096/fj.202100067R |
[6] |
Popov LD. Mitochondrial biogenesis: An update[J]. J Cell Mol Med, 2020, 24(9):4892-4899. doi: 10.1111/jcmm.15194.
doi: 10.1111/jcmm.15194 URL |
[7] |
Labarta E, de Los Santos MJ, Escribá MJ, et al. Mitochondria as a tool for oocyte rejuvenation[J]. Fertil Steril, 2019, 111(2):219-226. doi: 10.1016/j.fertnstert.2018.10.036.
doi: S0015-0282(18)32162-9 pmid: 30611551 |
[8] |
Das M, Sauceda C, Webster N. Mitochondrial Dysfunction in Obesity and Reproduction[J]. Endocrinology, 2021, 162(1):bqaa158. doi: 10.1210/endocr/bqaa158.
doi: 10.1210/endocr/bqaa158 |
[9] |
Chiang JL, Shukla P, Pagidas K, et al. Mitochondria in Ovarian Aging and Reproductive Longevity[J]. Ageing Res Rev, 2020, 63:101168. doi: 10.1016/j.arr.2020.101168.
doi: 10.1016/j.arr.2020.101168 |
[10] |
Wang L, Tang J, Wang L, et al. Oxidative stress in oocyte aging and female reproduction[J]. J Cell Physiol, 2021, 236(12):7966-7983. doi: 10.1002/jcp.30468.
doi: 10.1002/jcp.30468 pmid: 34121193 |
[11] |
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1):3-5. doi: 10.1089/rej.2005.8.3.
doi: 10.1089/rej.2005.8.3 URL |
[12] |
Montava-Garriga L, Ganley IG. Outstanding Questions in Mitophagy: What We Do and Do Not Know[J]. J Mol Biol, 2020, 432(1):206-230. doi: 10.1016/j.jmb.2019.06.032.
doi: S0022-2836(19)30429-2 pmid: 31299243 |
[13] |
Ma K, Chen G, Li W, et al. Mitophagy, Mitochondrial Homeostasis, and Cell Fate[J]. Front Cell Dev Biol, 2020, 8:467. doi: 10.3389/fcell.2020.00467.
doi: 10.3389/fcell.2020.00467 pmid: 32671064 |
[14] |
Gao A, Jiang J, Xie F, et al. Bnip3 in mitophagy: Novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction[J]. Clin Chim Acta, 2020, 506:72-83. doi: 10.1016/j.cca.2020.02.024.
doi: S0009-8981(20)30090-5 pmid: 32092316 |
[15] |
Yoo SM, Yamashita SI, Kim H, et al. FKBP8 LIRL-dependent mitochondrial fragmentation facilitates mitophagy under stress conditions[J]. FASEB J, 2020, 34(2):2944-2957. doi: 10.1096/fj.201901735R.
doi: 10.1096/fj.201901735R URL |
[16] |
Zhang Y, Yao Y, Qiu X, et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing[J]. Nat Immunol, 2019, 20(4):433-446. doi: 10.1038/s41590-019-0324-2.
doi: 10.1038/s41590-019-0324-2 pmid: 30804553 |
[17] |
Yadav PK, Tiwari M, Gupta A, et al. Germ cell depletion from mammalian ovary: possible involvement of apoptosis and autophagy[J]. J Biomed Sci, 2018, 25(1):36. doi: 10.1186/s12929-018-0438-0.
doi: 10.1186/s12929-018-0438-0 pmid: 29681242 |
[18] |
Poulton J, Marchington DR. Segregation of mitochondrial DNA (mtDNA) in human oocytes and in animal models of mtDNA disease: clinical implications[J]. Reproduction, 2002, 123(6):751-755. doi: 10.1530/rep.0.1230751.
doi: 10.1530/rep.0.1230751 pmid: 12052229 |
[19] |
Lamas-Toranzo I, Pericuesta E, Bermejo-Álvarez P. Mitochondrial and metabolic adjustments during the final phase of follicular development prior to IVM of bovine oocytes[J]. Theriogenology, 2018, 119:156-162. doi: 10.1016/j.theriogenology.2018.07.007.
doi: S0093-691X(18)30466-7 pmid: 30015144 |
[20] |
Kim KH, Kim EY, Ko JJ, et al. Gas6 is a reciprocal regulator of mitophagy during mammalian oocyte maturation[J]. Sci Rep, 2019, 9(1):10343. doi: 10.1038/s41598-019-46459-3.
doi: 10.1038/s41598-019-46459-3 |
[21] |
Boudoures AL, Saben J, Drury A, et al. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy[J]. Dev Biol, 2017, 426(1):126-138. doi: 10.1016/j.ydbio.2017.04.005.
doi: S0012-1606(16)30811-9 pmid: 28438607 |
[22] |
Van Blerkom J, Davis P, Mathwig V, et al. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos[J]. Hum Reprod, 2002, 17(2):393-406. doi: 10.1093/humrep/17.2.393.
doi: 10.1093/humrep/17.2.393 pmid: 11821285 |
[23] |
Shen Q, Liu Y, Li H, et al. Effect of mitophagy in oocytes and granulosa cells on oocyte quality?[J]. Biol Reprod, 2021, 104(2):294-304. doi: 10.1093/biolre/ioaa194.
doi: 10.1093/biolre/ioaa194 URL |
[24] |
Nishigaki A, Tsubokura H, Tsuzuki-Nakao T, et al. Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function[J]. Reprod Med Biol, 2022, 21(1):e12428. doi: 10.1002/rmb2.12428.
doi: 10.1002/rmb2.12428 |
[25] |
Yi S, Zheng B, Zhu Y, et al. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS[J]. Am J Physiol Endocrinol Metab, 2020, 319(1):E91-E101. doi: 10.1152/ajpendo.00006.2020.
doi: 10.1152/ajpendo.00006.2020 URL |
[26] |
Ito J, Shirasuna K, Kuwayama T, et al. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes[J]. Cryobiology, 2020, 93:37-43. doi: 10.1016/j.cryobiol.2020.02.014.
doi: S0011-2240(19)30646-7 pmid: 32171796 |
[27] |
Sugiyama M, Kawahara-Miki R, Kawana H, et al. Resveratrol-induced mitochondrial synthesis and autophagy in oocytes derived from early antral follicles of aged cows[J]. J Reprod Dev, 2015, 61(4):251-259. doi: 10.1262/jrd.2015-001.
doi: 10.1262/jrd.2015-001 URL |
[28] |
Zhou J, Xue Z, He HN, et al. Resveratrol delays postovulatory aging of mouse oocytes through activating mitophagy[J]. Aging (Albany NY), 2019, 11(23):11504-11519. doi: 10.18632/aging.102551.
doi: 10.18632/aging.102551 |
[29] |
He C, Lu S, Wang XZ, et al. FOXO3a protects glioma cells against temozolomide-induced DNA double strand breaks via promotion of BNIP3-mediated mitophagy[J]. Acta Pharmacol Sin, 2021, 42(8):1324-1337. doi: 10.1038/s41401-021-00663-y.
doi: 10.1038/s41401-021-00663-y pmid: 33879840 |
[30] |
Xu J, Sun L, He M, et al. Resveratrol Protects against Zearalenone-Induced Mitochondrial Defects during Porcine Oocyte Maturation via PINK1/Parkin-Mediated Mitophagy[J]. Toxins (Basel), 2022, 14(9):641. doi: 10.3390/toxins14090641.
doi: 10.3390/toxins14090641 URL |
[31] |
López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, et al. Is coenzyme Q a key factor in aging?[J]. Mech Ageing Dev, 2010, 131(4):225-235. doi: 10.1016/j.mad.2010.02.003.
doi: 10.1016/j.mad.2010.02.003 pmid: 20193705 |
[32] |
Tian G, Sawashita J, Kubo H, et al. Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice[J]. Antioxid Redox Signal, 2014, 20(16):2606-2620. doi: 10.1089/ars.2013.5406.
doi: 10.1089/ars.2013.5406 URL |
[33] |
Niu YJ, Zhou W, Nie ZW, et al. Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs[J]. Aging (Albany NY), 2020, 12(2):1256-1271. doi: 10.18632/aging.102681.
doi: 10.18632/aging.102681 |
[34] |
王蕾, 马欣原, 冯欣, 等. 辅酶Q10片联合雌二醇片/雌二醇地屈孕酮片治疗早发性卵巢功能不全所致不孕症的临床研究[J]. 药物评价研究, 2022, 45(3):538-543. doi: 10.7501/j.issn.1674-6376.2022.03.020.
doi: 10.7501/j.issn.1674-6376.2022.03.020 |
[35] |
Jia Z, Wang H, Feng Z, et al. Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage[J]. Ecotoxicol Environ Saf, 2019, 180:168-178. doi: 10.1016/j.ecoenv.2019.05.019.
doi: 10.1016/j.ecoenv.2019.05.019 URL |
[36] |
Lemasters JJ. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy(Type 3)[J]. Redox Biol, 2014, 2:749-754. doi: 10.1016/j.redox.2014.06.004.
doi: 10.1016/j.redox.2014.06.004 pmid: 25009776 |
[37] |
Brayboy LM, Clark H, Knapik LO, et al. Nitrogen mustard exposure perturbs oocyte mitochondrial physiology and alters reproductive outcomes[J]. Reprod Toxicol, 2018, 82:80-87. doi: 10.1016/j.reprotox.2018.10.002.
doi: S0890-6238(18)30194-1 pmid: 30308227 |
[38] |
Lieber T, Jeedigunta SP, Palozzi JM, et al. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline[J]. Nature, 2019, 570(7761):380-384. doi: 10.1038/s41586-019-1213-4.
doi: 10.1038/s41586-019-1213-4 |
[39] |
Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells[J]. Free Radic Biol Med, 2002, 32(9):804-812. doi: 10.1016/s0891-5849(02)00787-6.
doi: 10.1016/s0891-5849(02)00787-6 URL |
[40] |
Zhang Z, Hu Y, Guo J, et al. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice[J]. Nat Commun, 2017, 8:14585. doi: 10.1038/ncomms14585.
doi: 10.1038/ncomms14585 pmid: 28248286 |
[41] |
Jiao XF, Liang QM, Wu D, et al. Effects of Acute Fluorene-9-Bisphenol Exposure on Mouse Oocyte in vitro Maturation and Its Possible Mechanisms[J]. Environ Mol Mutagen, 2019, 60(3):243-253. doi: 10.1002/em.22258.
doi: 10.1002/em.22258 URL |
[1] | JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian. Research Progress on the Correlation between Oxidative Stress and Aneuploidy in Oocytes of Aging Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 415-419. |
[2] | WANG Dong-xue, BAO Li-li, LIU Shan, YANG Bo. Effect of Modified Flexible Antagonist Protocol on the Outcome of COH in Patients with Normal Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 185-189. |
[3] | WEN Xing-xing, CHAI Meng-han, YANG Ni, ZOU Hui-juan, ZHANG Zhi-guo, LI Lin, CHEN Bei-li. A Case of Oocyte Maturation Arrest Caused by Heterozygous Variation of TUBB8 Gene c.154-156del [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 17-19. |
[4] | ZHANG Yu-jie, WANG Wen-cheng, ZHANG Ning. Research Progress of GDF-9 and BMP-15 on Follicular Development and Insulin Resistance in PCOS [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 487-491. |
[5] | XIANG Chun-rong, DENG Zhi-min, DAI Fang-fang, CHENG Yan-xiang. Clinical Studies of MSCs and MSCs-Derived Exosomes in Premature Ovarian Insufficiency, and Research Progress [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 492-497. |
[6] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
[7] | LIU Xu, YANG Ai-jun, LI Ze-wu, SHI Cheng, LIU Li-jun, KONG Xiao-li, WANG Jing-wen. The Mechanism of Platelet-Rich Plasma on Improving Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 329-333. |
[8] | CHEN Qiu-yan, LU Nan, LIU Jia-yin. Clinical Application of Growth Hormone Supplementation in Non-DOR Patients with Previous IVF/ICSI Failure [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 184-188. |
[9] | LI Yan, HU Fang-fang, CHEN Huan-huan, ZHANG Lei, ZHANG Cui-lian, LIANG Lin-lin. Research Progress of In Vitro Three-Dimensional Culture System of Preantral Follicles [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 221-225. |
[10] | ZHU Wen-bin, XU Jing-yu, MA Rui-hong, XIA Tian, LUAN Zu-qian. Research Progress of Brain-Derived Neurotrophic Factor and Female Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 140-144. |
[11] | TIAN Hui, ZHANG Yu, ZHAO Xiao-xi. The Relationship between PIWI-Interacting RNA and Reproductive Function [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 150-155. |
[12] | CUI Yu-gui, JIA Hong-yan, SHI Chen-nan, YAN Zheng-jie, LIU Jia-yin, MA Xiang. Clinical Practice of Oocyte Mitochondrial Transplantation and Ethical Issue [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 89-94. |
[13] | ZHAO Hai-jun, ZHANG Xi-hui, CHEN Jing, LU Jing, ZHANG Hong-feng, CHANG Wen-liang. Comparison of Three Controlled Ovarian Hyperstimulation Protocols in Advanced-Age Infertile Patients with Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 13-17. |
[14] | WANG Yuan, QIAN Lin-xue, LIN Ying-qi, ZHOU Qin-ying. Transvaginal Real-Time Three-Dimensional Hysterosalpingo-Contrast Sonography in Assessing Contralateral Tubal Patency in Patients after Unilateral Salpingectomy [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 456-459. |
[15] | ZHANG Yu, XIA Tian. Case Report of Pregnancy in Two Patients with Diminished Ovarian Reserve Treated with Traditional and Western Medicine, and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 460-463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||