Journal of International Reproductive Health/Family Planning ›› 2025, Vol. 44 ›› Issue (1): 30-35.doi: 10.12280/gjszjk.20240449
• Review • Previous Articles Next Articles
WANG Cong, GONG Zheng, MA Sai-hua, HU Kai-yuan, LANG Meng-ran, XIA Tian()
Received:
2024-09-18
Published:
2025-01-15
Online:
2025-01-22
Contact:
XIA Tian, E-mail: WANG Cong, GONG Zheng, MA Sai-hua, HU Kai-yuan, LANG Meng-ran, XIA Tian. Research Progress on Clinical Prediction Models for Pregnancy Outcomes in Assisted Reproductive Technology[J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 30-35.
Add to citation manager EndNote|Ris|BibTeX
文献 | 发表年份 (年) | 研究类型 | 样本量 | 纳入影响因素 | 算法 | 结局 | 模型效果 (AUC) |
---|---|---|---|---|---|---|---|
Balachandren等[ | 2020 | 回顾性单中心病例对照研究 | 516个周期 | 年龄、AMH、FSH | 逻辑回归 | 活产 | 0.680 |
Liang等[ | 2021 | 回顾性单中心病例对照研究 | 2 189个周期 | 年龄、BMI、HOMA-IR、FSH、LH、E2、子宫内膜厚度、胚胎总数、ET次数 | 随机森林 | 活产 | 0.830 |
Ueno等[ | 2021 | 回顾性单中心病例对照研究 | 3 018个周期 | 年龄、胚胎评分 | 深度学习 | 临床妊娠 | >0.600 |
Yang等[ | 2022 | 回顾性单中心病例对照研究 | 367个胚胎 | 胚胎形态动力学 | 随机森林 | 临床妊娠 | 0.910 |
Chen等[ | 2022 | 回顾性单中心病例对照研究 | 338个位点 | 卵丘细胞甲基化特征 | 随机森林 | 临床妊娠 | 0.880 |
Wang等[ | 2022 | 回顾性单中心病例对照研究 | 17 288例患者 | 年龄、不孕原因、不孕年限、卵巢刺激方案、冷冻胚胎总数 | 随机森林 | 临床妊娠 | 0.721 |
Yang等[ | 2022 | 回顾性单中心病例对照研究 | 369例患者 | 年龄、BMI、周期数、红细胞压积、LH、孕酮、FSH和子宫内膜厚度 | 随机森林 | 临床妊娠 | 0.817 |
Enatsu等[ | 2022 | 回顾性单中心病例对照研究 | 19 342个囊胚 | 囊胚图像、胚胎数据 | 神经网络 | 临床妊娠 | 0.710 |
Huang等[ | 2022 | 回顾性单中心病例对照研究 | 33 738个胚胎 | 胚胎数据 | 深度学习 | 活产 | 0.968 |
Sun等[ | 2023 | 回顾性单中心病例对照研究 | 1 239个周期 | PMOI | 逻辑回归 | 临床妊娠 | 0.621 |
Meng等[ | 2023 | 前瞻性单中心病例对照研究 | 39例患者 | 排卵功能障碍、GAST、GPX3、THBS2 | 逻辑回归 | 活产 | 0.842 |
Chen等[ | 2023 | 回顾性单中心病例对照研究 | 86例患者 | AMH、E2、年龄、精子DFI、hsa-miR-199a-3p、hsa-miR-199a-5p、hsa-miR-99a-5p | 逻辑回归 | 临床妊娠 | 0.853 |
Li等[ | 2023 | 回顾性双中心病例对照研究 | 840例患者 | 不孕年限、BMI、扳机日E2、扳机日子宫内膜厚度 | LightGBM机 器学习 | 临床妊娠 | 0.904 |
Liu等[ | 2023 | 回顾性单中心病例对照研究 | 17 580个囊胚 | 囊胚图像、不孕夫妇的临床特征 | 神经网络 | 活产 | 0.770 |
Zhu等[ | 2024 | 回顾性单中心病例对照研究 | 969例患者 | 年龄、BMI、AFC、AMH、成熟卵母细胞数、移植胚胎数、移植胚胎质量 | 逻辑回归 | 临床妊娠 | 0.752 |
Liu等[ | 2024 | 回顾性单中心病例对照研究 | 1 405个周期 | 年龄、卵巢敏感指数、控制性卵巢刺激方案、Gn起始剂量、扳机日子宫内膜厚度、扳机日孕酮水平、ET方案 | 神经网络 | 活产 | 0.726 |
Mapstone等[ | 2024 | 回顾性单中心病例对照研究 | 700个胚胎 | 胚胎的延时视频图像数据 | 深度学习 | 活产 | 0.680 |
文献 | 发表年份 (年) | 研究类型 | 样本量 | 纳入影响因素 | 算法 | 结局 | 模型效果 (AUC) |
---|---|---|---|---|---|---|---|
Balachandren等[ | 2020 | 回顾性单中心病例对照研究 | 516个周期 | 年龄、AMH、FSH | 逻辑回归 | 活产 | 0.680 |
Liang等[ | 2021 | 回顾性单中心病例对照研究 | 2 189个周期 | 年龄、BMI、HOMA-IR、FSH、LH、E2、子宫内膜厚度、胚胎总数、ET次数 | 随机森林 | 活产 | 0.830 |
Ueno等[ | 2021 | 回顾性单中心病例对照研究 | 3 018个周期 | 年龄、胚胎评分 | 深度学习 | 临床妊娠 | >0.600 |
Yang等[ | 2022 | 回顾性单中心病例对照研究 | 367个胚胎 | 胚胎形态动力学 | 随机森林 | 临床妊娠 | 0.910 |
Chen等[ | 2022 | 回顾性单中心病例对照研究 | 338个位点 | 卵丘细胞甲基化特征 | 随机森林 | 临床妊娠 | 0.880 |
Wang等[ | 2022 | 回顾性单中心病例对照研究 | 17 288例患者 | 年龄、不孕原因、不孕年限、卵巢刺激方案、冷冻胚胎总数 | 随机森林 | 临床妊娠 | 0.721 |
Yang等[ | 2022 | 回顾性单中心病例对照研究 | 369例患者 | 年龄、BMI、周期数、红细胞压积、LH、孕酮、FSH和子宫内膜厚度 | 随机森林 | 临床妊娠 | 0.817 |
Enatsu等[ | 2022 | 回顾性单中心病例对照研究 | 19 342个囊胚 | 囊胚图像、胚胎数据 | 神经网络 | 临床妊娠 | 0.710 |
Huang等[ | 2022 | 回顾性单中心病例对照研究 | 33 738个胚胎 | 胚胎数据 | 深度学习 | 活产 | 0.968 |
Sun等[ | 2023 | 回顾性单中心病例对照研究 | 1 239个周期 | PMOI | 逻辑回归 | 临床妊娠 | 0.621 |
Meng等[ | 2023 | 前瞻性单中心病例对照研究 | 39例患者 | 排卵功能障碍、GAST、GPX3、THBS2 | 逻辑回归 | 活产 | 0.842 |
Chen等[ | 2023 | 回顾性单中心病例对照研究 | 86例患者 | AMH、E2、年龄、精子DFI、hsa-miR-199a-3p、hsa-miR-199a-5p、hsa-miR-99a-5p | 逻辑回归 | 临床妊娠 | 0.853 |
Li等[ | 2023 | 回顾性双中心病例对照研究 | 840例患者 | 不孕年限、BMI、扳机日E2、扳机日子宫内膜厚度 | LightGBM机 器学习 | 临床妊娠 | 0.904 |
Liu等[ | 2023 | 回顾性单中心病例对照研究 | 17 580个囊胚 | 囊胚图像、不孕夫妇的临床特征 | 神经网络 | 活产 | 0.770 |
Zhu等[ | 2024 | 回顾性单中心病例对照研究 | 969例患者 | 年龄、BMI、AFC、AMH、成熟卵母细胞数、移植胚胎数、移植胚胎质量 | 逻辑回归 | 临床妊娠 | 0.752 |
Liu等[ | 2024 | 回顾性单中心病例对照研究 | 1 405个周期 | 年龄、卵巢敏感指数、控制性卵巢刺激方案、Gn起始剂量、扳机日子宫内膜厚度、扳机日孕酮水平、ET方案 | 神经网络 | 活产 | 0.726 |
Mapstone等[ | 2024 | 回顾性单中心病例对照研究 | 700个胚胎 | 胚胎的延时视频图像数据 | 深度学习 | 活产 | 0.680 |
[1] | Shacfe G, Turko R, Syed HH, et al. A DNA Methylation Perspective on Infertility[J]. Genes(Basel), 2023, 14(12):2132. doi: 10.3390/genes14122132. |
[2] | Zegers-Hochschild F, Crosby JA, Musri C, et al. ART in Latin America: the Latin American Registry, 2020[J]. JBRA Assist Reprod, 2023, 27(3):514-538. doi: 10.5935/1518-0557.20230025. |
[3] | Wong KY, Tan HH, Allen JC, et al. Outcomes and cost analysis of single-embryo transfer versus double-embryo transfer[J]. Womens Health(Lond), 2023,19:17455057231206312. doi: 10.1177/17455057231206312. |
[4] |
Davoodi Nik B, Hashemi Karoii D, Favaedi R, et al. Differential expression of ion channel coding genes in the endometrium of women experiencing recurrent implantation failures[J]. Sci Rep, 2024, 14(1):19822. doi: 10.1038/s41598-024-70778-9.
pmid: 39192025 |
[5] | Cimadomo D, Craciunas L, Vermeulen N, et al. Definition, diagnostic and therapeutic options in recurrent implantation failure: an international survey of clinicians and embryologists[J]. Hum Reprod, 2021, 36(2):305-317. doi: 10.1093/humrep/deaa317. |
[6] | Bala R, Singh V, Rajender S, et al. Environment, Lifestyle, and Female Infertility[J]. Reprod Sci, 2021, 28(3):617-638. doi: 10.1007/s43032-020-00279-3. |
[7] | Li YH, Li HR, Wang PH. Parameters to predict the pregnancy in assisted reproductive technology[J]. J Chin Med Assoc, 2019, 82(4):249-250. doi: 10.1097/JCMA.0000000000000060. |
[8] |
Methorst C, Perrin J, Faix A, et al. Male infertility, environment and lifestyle[J]. Prog Urol, 2023, 33(13):613-623. doi: 10.1016/j.purol.2023.09.014.
pmid: 38012907 |
[9] |
van Smeden M, Reitsma JB, Riley RD, et al. Clinical prediction models: diagnosis versus prognosis[J]. J Clin Epidemiol, 2021, 132:142-145. doi: 10.1016/j.jclinepi.2021.01.009.
pmid: 33775387 |
[10] | Strandberg R, Jepsen P, Hagström H. Developing and validating clinical prediction models in hepatology-An overview for clinicians[J]. J Hepatol, 2024, 81(1):149-162. doi: 10.1016/j.jhep.2024.03.030. |
[11] | 刘志强, 熊风, 张宏展, 等. IVF-ET妊娠结局预测模型的研究进展[J]. 生殖医学杂志, 2021, 30(5):695-700. doi: 10.3969/j.issn.1004-3845.2021.05.025. |
[12] |
Shingshetty L, Cameron NJ, Mclernon DJ, et al. Predictors of success after in vitro fertilization[J]. Fertil Steril, 2024, 121(5):742-751. doi: 10.1016/j.fertnstert.2024.03.003.
pmid: 38492930 |
[13] | 于医萍, 高一博, 方兰兰, 等. 机器学习在体外受精-胚胎移植技术中的应用[J]. 中华生殖与避孕杂志, 2021, 41(10):883-892. doi: 10.3760/cma.j.cn101441-20200428-00251. |
[14] |
Jiang S, Li L, Li F, et al. Establishment of predictive model for analyzing clinical pregnancy outcome based on IVF-ET and ICSI assisted reproductive technology[J]. Saudi J Biol Sci, 2020, 27(4):1049-1056. doi: 10.1016/j.sjbs.2020.02.021.
pmid: 32256165 |
[15] | Zhu S, Jiang W, Sun Y, et al. Nomogram to predict the probability of clinical pregnancy in women with poor ovarian response undergoing in vitro fertilization/ intracytoplasmic sperm injection cycles[J]. Arch Gynecol Obstet, 2024, 310(3):1697-1707. doi: 10.1007/s00404-024-07598-9. |
[16] |
Balachandren N, Salman M, Diu NL, et al. Ovarian reserve as a predictor of cumulative live birth[J]. Eur J Obstet Gynecol Reprod Biol, 2020, 252:273-277. doi: 10.1016/j.ejogrb.2020.06.063.
pmid: 32645642 |
[17] | Sun X, Yao F, Yin C, et al. Independent value of PMOI on hCG day in predicting pregnancy outcomes in IVF/ICSI cycles[J]. Front Endocrinol(Lausanne), 2023,14:1086998. doi: 10.3389/fendo.2023.1086998. |
[18] | Meng S, Shi C, Jia Y, et al. A combined clinical and specific genes′ model to predict live birth for in vitro fertilization and embryo transfer patients[J]. BMC Pregnancy Childbirth, 2023, 23(1):702. doi: 10.1186/s12884-023-05988-6. |
[19] |
Chen L, Jiang R, Jiang Y, et al. A validated model for individualized prediction of pregnancy outcome in woman after fresh cycle of Day 5 single blastocyst transfer[J]. Sci Rep, 2023, 13(1):10016. doi: 10.1038/s41598-023-36824-8.
pmid: 37340007 |
[20] | Raef B, Ferdousi R. A Review of Machine Learning Approaches in Assisted Reproductive Technologies[J]. Acta Inform Med, 2019, 27(3):205-211. doi: 10.5455/aim.2019.27.205-211. |
[21] | Li L, Cui X, Yang J, et al. Using feature optimization and LightGBM algorithm to predict the clinical pregnancy outcomes after in vitro fertilization[J]. Front Endocrinol(Lausanne), 2023, 14:1305473. doi: 10.3389/fendo.2023.1305473. |
[22] | Yang L, Peavey M, Kaskar K, et al. Development of a dynamic machine learning algorithm to predict clinical pregnancy and live birth rate with embryo morphokinetics[J]. F S Rep, 2022, 3(2):116-123. doi: 10.1016/j.xfre.2022.04.004. |
[23] | Chen F, Chen Y, Mai Q. Multi-Omics Analysis and Machine Learning Prediction Model for Pregnancy Outcomes After Intracytoplasmic Sperm Injection-in vitro Fertilization[J]. Front Public Health, 2022,10:924539. doi: 10.3389/fpubh.2022.924539. |
[24] | Hu J, Szymczak S. A review on longitudinal data analysis with random forest[J]. Brief Bioinform, 2023, 24(2):bbad002. doi: 10.1093/bib/bbad002. |
[25] | Liang R, An J, Zheng Y, et al. Predicting and improving the probability of live birth for women undergoing frozen-thawed embryo transfer: a data-driven estimation and simulation model[J]. Comput Methods Programs Biomed, 2021,198:105780. doi: 10.1016/j.cmpb.2020.105780. |
[26] | Wang CW, Kuo CY, Chen CH, et al. Predicting clinical pregnancy using clinical features and machine learning algorithms in in vitro fertilization[J]. PLoS One, 2022, 17(6):e0267554. doi: 10.1371/journal.pone.0267554. |
[27] | Yang H, Liu F, Ma Y, et al. Clinical pregnancy outcomes prediction in vitro fertilization women based on random forest prediction model: A nested case-control study[J]. Medicine(Baltimore), 2022, 101(49):e32232. doi: 10.1097/MD.0000000000032232. |
[28] | Yang R, Yu Y. Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis[J]. Front Oncol, 2021,11:638182. doi: 10.3389/fonc.2021.638182. |
[29] | Liu L, Liang H, Yang J, et al. Clinical data-based modeling of IVF live birth outcome and its application[J]. Reprod Biol Endocrinol, 2024, 22(1):76. doi: 10.1186/s12958-024-01253-3. |
[30] | Enatsu N, Miyatsuka I, An LM, et al. A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation[J]. Reprod Med Biol, 2022, 21(1):e12443. doi: 10.1002/rmb2.12443. |
[31] | Liu H, Zhang Z, Gu Y, et al. Development and evaluation of a live birth prediction model for evaluating human blastocysts from a retrospective study[J]. Elife, 2023,12:e83662. doi: 10.7554/eLife.83662. |
[32] | Thirunavukarasu R, C GPD, R G, et al. Towards computational solutions for precision medicine based big data healthcare system using deep learning models: A review[J]. Comput Biol Med, 2022, 149:106020. doi: 10.1016/j.compbiomed.2022.106020. |
[33] |
Ueno S, Berntsen J, Ito M, et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study[J]. Fertil Steril, 2021, 116(4):1172-1180. doi: 10.1016/j.fertnstert.2021.06.001.
pmid: 34246469 |
[34] | Mapstone C, Hunter H, Brison D, et al. Deep learning pipeline reveals key moments in human embryonic development predictive of live birth after in vitro fertilization[J]. Biol Methods Protoc, 2024, 9(1):bpae052. doi: 10.1093/biomethods/bpae052. |
[35] | Huang B, Zheng S, Ma B, et al. Using deep learning to predict the outcome of live birth from more than 10,000 embryo data[J]. BMC Pregnancy Childbirth, 2022, 22(1):36. doi: 10.1186/s12884-021-04373-5. |
[36] | Ratna MB, Bhattacharya S, Abdulrahim B, et al. A systematic review of the quality of clinical prediction models in in vitro fertilisation[J]. Hum Reprod, 2020, 35(1):100-116. doi: 10.1093/humrep/dez258. |
[1] | LU Jue-yun, LI Xin, JI Hui, ZHAO Chun, ZHANG Jun-qiang, LING Xiu-feng. Effect of Half-Dose Antagonist on Pregnancy Outcomes of IVF/ICSI [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(2): 110-115. |
[2] | WANG Jia-yi, JI Hui, LI Xin, LING Xiu-feng. Effect of Serum β-hCG Level on the Next Day of Dual Trigger in Antagonist Regimen on the Outcome of Fresh Embryo Transfer [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 447-452. |
[3] | WANG Yue, TANG Cen, LI Ya-jin, HU Wan-qin. Risk Factors of Adverse Pregnancy Outcomes in Patients with Undifferentiated Connective Tissue Disease and Construction of A Nomogram Model for Predicting [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 453-457. |
[4] | LUO Sha-sha, WANG De-jing. Analysis of Influencing Factors of Frozen-Thawed Embryo Transfer Pregnancy Outcome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 420-424. |
[5] | XIE Yu-xin, WANG Rui-xue, CHEN Meng-na, CHU Ji-jun. The Role of Annexin A Family at Maternal-Fetal Interface and Related Adverse Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 430-434. |
[6] | WU Yu-xuan, MENG Zi-fan, DONG Li, JI Hui. The Effect of Time Interval between Hysteroscopic Polypectomy and Start of Frozen-Thawed Embryo Transfer Cycles on Pregnancy Outcomes [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 274-278. |
[7] | WANG Jie, MA Xiang. Relationship between Uric Acid and Female Reproductive Disorders and Pregnancy Outcomes [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 63-67. |
[8] | LI Cai-hua, GUO Pei-pei, JIANG Xiao-hua, FANG You-yan, ZHOU Ping, WEI Zhao-lian. Application Progress of Progestin-Primed Ovarian Stimulation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 68-73. |
[9] | CHEN Yin, WANG Jing, MAO Yun-dong. Research Progress of the Controlled Ovarian Stimulation Protocols for Women with Endometriosis-Related Infertility [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 398-402. |
[10] | LI Ning, ZHANG An-ni, ZHANG Xue-hong. Research Progress of Autologous Peripheral Blood Mononuclear Cell in the Treatment of Unexplained Recurrent Implantation Failure [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 403-408. |
[11] | ZHU Meng-yi, GAO Jing-shu, WANG Yu, FENG Jia-xing, ZHANG Bei, WU Xiao-ke. Research Progress of Growth Differentiation Factor 15 and Adverse Pregnancy Outcomes [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 419-423. |
[12] | NI Dan-yu, YANG Ye, XIE Qi-jun, JIANG Wei, LING Xiu-feng. The Effect of Poly-Pronucleus Incidence on Embryo Development and Pregnancy Outcome after ICSI [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 272-276. |
[13] | CHEN Qiu-yan, LU Nan, LIU Jia-yin. Clinical Application of Growth Hormone Supplementation in Non-DOR Patients with Previous IVF/ICSI Failure [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 184-188. |
[14] | ZHANG Xiao-lan, WU Xun, CAO Shan-ren, ZHANG Jun-qiang, LING Xiu-feng, LI Xiu-ling. The Safety and Clinical Pregnancy Outcome of Preimplantation Genetic Testing in Frozen-Thawed Embryos [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 102-106. |
[15] | HUO Wen-jie, WANG Xiao-cong, PENG Fei, QUAN Song. Application of Deep Learning in Optimal Embryo Selection of In Vitro Fertilization [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 135-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||