Journal of International Reproductive Health/Family Planning ›› 2025, Vol. 44 ›› Issue (2): 132-136.doi: 10.12280/gjszjk.20240540
• Review • Previous Articles Next Articles
JIANG Nan, ZHAO Xiao-li, LI Kai-xi, XU Jia-qi, JIA Ying-ying, XIA Tian()
Received:
2024-11-10
Published:
2025-03-15
Online:
2025-03-10
Contact:
XIA Tian, E-mail: JIANG Nan, ZHAO Xiao-li, LI Kai-xi, XU Jia-qi, JIA Ying-ying, XIA Tian. The Correlation between Excessive Activation of Primordial Follicles and Diminished Ovarian Reserve[J]. Journal of International Reproductive Health/Family Planning, 2025, 44(2): 132-136.
Add to citation manager EndNote|Ris|BibTeX
[1] | Wang J, Sun X, Yang Z, et al. Epigenetic regulation in premature ovarian failure: A literature review[J]. Front Physiol, 2022,13:998424. doi: 10.3389/fphys.2022.998424. |
[2] |
Zhu Q, Li Y, Ma J, et al. Potential factors result in diminished ovarian reserve: a comprehensive review[J]. J Ovarian Res, 2023, 16(1):208. doi: 10.1186/s13048-023-01296-x.
pmid: 37880734 |
[3] | Liang C, Zhang X, Qi C, et al. UHPLC-MS-MS analysis of oxylipins metabolomics components of follicular fluid in infertile individuals with diminished ovarian reserve[J]. Reprod Biol Endocrinol, 2021, 19(1):143. doi: 10.1186/s12958-021-00825-x. |
[4] |
Xu H, Hao M, Zheng C, et al. Effect of acupuncture for diminished ovarian reserve: study protocol for a randomized controlled trial[J]. Trials, 2021, 22(1):720. doi: 10.1186/s13063-021-05684-w.
pmid: 34666807 |
[5] | Gutzeit O, Iluz R, Ginsberg Y, et al. Perinatal hypoxia leads to primordial follicle activation and premature depletion of ovarian reserve[J]. J Matern Fetal Neonatal Med, 2022, 35(25):7844-7848. doi: 10.1080/14767058.2021.1937985. |
[6] | Zhang KH, Zhang FF, Zhang ZL, et al. Follicle stimulating hormone controls granulosa cell glutamine synthesis to regulate ovulation[J]. Protein Cell, 2024, 15(7):512-529. doi: 10.1093/procel/pwad065. |
[7] | Kavarthapu R, Lou H, Pham T, et al. Single-nucleus and spatial transcriptomics of paediatric ovary: Molecular insights into the dysregulated signalling pathways underlying premature ovarian insufficiency in classic galactosemia[J]. Clin Transl Med, 2024, 14(10):e70043. doi: 10.1002/ctm2.70043. |
[8] |
Hagen-Lillevik S, Johnson J, Lai K. Early postnatal alterations in follicular stress response and survival in a mouse model of Classic Galactosemia[J]. J Ovarian Res, 2022, 15(1):122. doi: 10.1186/s13048-022-01049-2.
pmid: 36414970 |
[9] |
Xu B, Li Z, Li S, et al. Pathogenic variants in TSC2 might cause premature ovarian insufficiency through activated mTOR induced hyperactivation of primordial follicles[J]. Fertil Steril, 2022, 118(6):1139-1149. doi: 10.1016/j.fertnstert.2022.08.853.
pmid: 36229297 |
[10] |
Zhang T, Tong Y, Zhu R, et al. HDAC6-dependent deacetylation of NGF dictates its ubiquitination and maintains primordial follicle dormancy[J]. Theranostics, 2024, 14(6):2345-2366. doi: 10.7150/thno.95164.
pmid: 38646645 |
[11] | Chen X, Tang Z, Guan H, et al. Rapamycin maintains the primordial follicle pool and protects ovarian reserve against cyclophosphamide-induced damage[J]. J Reprod Dev, 2022, 68(4):287-294. doi: 10.1262/jrd.2022-001. |
[12] | Hu YY, Zhong RH, Guo XJ, et al. Jinfeng pills ameliorate premature ovarian insufficiency induced by cyclophosphamide in rats and correlate to modulating IL-17A/IL-6 axis and MEK/ERK signals[J]. J Ethnopharmacol, 2023,307:116242. doi: 10.1016/j.jep.2023.116242. |
[13] |
Liu M, Xiao B, Zhu Y, et al. MicroRNA-144-3p protects against chemotherapy-induced apoptosis of ovarian granulosa cells and activation of primordial follicles by targeting MAP3K9[J]. Eur J Med Res, 2023, 28(1):264. doi: 10.1186/s40001-023-01231-2.
pmid: 37537658 |
[14] | Zhang Y, Han D, Yu X, et al. MiRNA-190a-5p promotes primordial follicle hyperactivation by targeting PHLPP1 in premature ovarian failure[J]. Front Genet, 2022,13:1034832. doi: 10.3389/fgene.2022.1034832. |
[15] | Ra K, Park SC, Lee BC. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant[J]. Int J Mol Sci, 2023, 24(5):5053. doi: 10.3390/ijms24055053. |
[16] |
Rishi JK, Timme K, White HE, et al. Trajectory of primordial follicle depletion is accelerated in obese mice in response to 7,12-dimethylbenz[a]anthracene exposure?[J]. Biol Reprod, 2024, 111(2):483-495. doi: 10.1093/biolre/ioae059.
pmid: 38625059 |
[17] |
Wang F, Liu Y, Ni F, et al. BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency[J]. Nat Commun, 2022, 13(1):5871. doi: 10.1038/s41467-022-33323-8.
pmid: 36198708 |
[18] |
Zhou L, Xie Y, Li S, et al. Rapamycin Prevents cyclophosphamide-induced Over-activation of Primordial Follicle pool through PI3K/Akt/mTOR Signaling Pathway in vivo[J]. J Ovarian Res, 2017, 10(1):56. doi: 10.1186/s13048-017-0350-3.
pmid: 28814333 |
[19] | Yan W, Li M, Guo Q, et al. Chronic exposure to propylparaben at the humanly relevant dose triggers ovarian aging in adult mice[J]. Ecotoxicol Environ Saf, 2022,235:113432. doi: 10.1016/j.ecoenv.2022.113432. |
[20] | Liu C, Shui S, Yao Y, et al. Ascorbic acid ameliorates dysregulated folliculogenesis induced by mono-(2-ethylhexyl)phthalate in neonatal mouse ovaries via reducing ovarian oxidative stress[J]. Reprod Domest Anim, 2020, 55(10):1418-1424. doi: 10.1111/rda.13790. |
[21] | Zheng B, Hu X, Hu Y, et al. Type III adenylyl cyclase is essential for follicular development in female mice and their reproductive lifespan[J]. iScience, 2024, 27(7):110293. doi: 10.1016/j.isci.2024.110293. |
[22] |
Xiao Y, Peng X, Peng Y, et al. Macrophage-derived extracellular vesicles regulate follicular activation and improve ovarian function in old mice by modulating local environment[J]. Clin Transl Med, 2022, 12(10):e1071. doi: 10.1002/ctm2.1071.
pmid: 36229897 |
[23] | Du Y, Carranza Z, Luan Y, et al. Evidence of cancer therapy-induced chronic inflammation in the ovary across multiple species: A potential cause of persistent tissue damage and follicle depletion[J]. J Reprod Immunol, 2022,150:103491. doi: 10.1016/j.jri.2022.103491. |
[24] |
Pereira L, Ferreira CS, Dias K, et al. Ovarian Puncture Triggers an Inflammatory Response that did not Affect Late Folliculogenesis, Ovulation Rate, and Fertility[J]. Reprod Sci, 2024, 31(10):3202-3214. doi: 10.1007/s43032-024-01654-0.
pmid: 39043998 |
[25] | Sato Y, Kawamura K. Rapamycin treatment maintains developmental potential of oocytes in mice and follicle reserve in human cortical fragments grafted into immune-deficient mice[J]. Mol Cell Endocrinol, 2020,504:110694. doi: 10.1016/j.mce.2019.110694. |
[26] | Fan Z, Zhang X, Shang Y, et al. Intestinal Flora Changes Induced by a High-Fat Diet Promote Activation of Primordial Follicles through Macrophage Infiltration and Inflammatory Factor Secretion in Mouse Ovaries[J]. Int J Mol Sci, 2022, 23(9):4797. doi: 10.3390/ijms23094797. |
[27] | Zhou S, Xi Y, Chen Y, et al. Low WIP1 Expression Accelerates Ovarian Aging by Promoting Follicular Atresia and Primordial Follicle Activation[J]. Cells, 2022, 11(23):3920. doi: 10.3390/cells11233920. |
[28] |
Zhang X, Zhang W, Wang Z, et al. Enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling[J]. Cell Death Dis, 2022, 13(1):87. doi: 10.1038/s41419-022-04541-1.
pmid: 35087042 |
[29] | Ahmadi S, Ohkubo T. Leptin Promotes Primordial Follicle Activation by Regulating Ovarian Insulin-like Growth Factor System in Chicken[J]. Endocrinology, 2022, 163(9):bqac112. doi: 10.1210/endocr/bqac112. |
[30] | Sakaguchi K, Kawano K, Otani Y, et al. Relationship between Amino Acid Metabolism and Bovine In Vitro Follicle Activation and Growth[J]. Animals(Basel), 2023, 13(7):1141. doi: 10.3390/ani13071141. |
[31] | Huang S, Zhang D, Shi X, et al. Acupuncture and related therapies for anxiety and depression in patients with premature ovarian insufficiency and diminished ovarian reserve: a systematic review and meta-analysis[J]. Front Psychiatry, 2024,15:1495418. doi: 10.3389/fpsyt.2024.1495418. |
[32] | Jin J, Ruan X, Hua L, et al. Prevalence of metabolic syndrome and its components in Chinese women with premature ovarian insufficiency[J]. Gynecol Endocrinol, 2023, 39(1):2254847. doi: 10.1080/09513590.2023.2254847. |
[33] | Guo X, Zhu Y, Guo L, et al. BCAA insufficiency leads to premature ovarian insufficiency via ceramide-induced elevation of ROS[J]. EMBO Mol Med, 2023, 15(4):e17450. doi: 10.15252/emmm.202317450. |
[34] | Lu Y, Xia Z. Diminished ovarian reserve is associated with metabolic disturbances and hyperhomocysteinemia in women with infertility[J]. J Obstet Gynaecol, 2023, 43(2):2282722. doi: 10.1080/01443615.2023.2282722. |
[35] |
Ossewaarde ME, Bots ML, Verbeek AL, et al. Age at menopause, cause-specific mortality and total life expectancy[J]. Epidemiology, 2005, 16(4):556-562. doi: 10.1097/01.ede.0000165392.35273.d4.
pmid: 15951675 |
[36] | Mason JB, Cargill SL, Anderson GB, et al. Transplantation of young ovaries to old mice increased life span in transplant recipients[J]. J Gerontol A Biol Sci Med Sci, 2009, 64(12):1207-1211. doi: 10.1093/gerona/glp134. |
[37] | Chen Q, Xu Z, Li X, et al. Epigallocatechin gallate and theaflavins independently alleviate cyclophosphamide-induced ovarian damage by inhibiting the overactivation of primordial follicles and follicular atresia[J]. Phytomedicine, 2021,92:153752. doi: 10.1016/j.phymed.2021.153752. |
[38] | Huang P, Zhou Y, Tang W, et al. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granulosa cells in mice[J]. J Nutr Biochem, 2022,101:108911. doi: 10.1016/j.jnutbio.2021.108911. |
[39] | Feng J, Ma WW, Li HX, et al. Melatonin prevents cyclophosphamide-induced primordial follicle loss by inhibiting ovarian granulosa cell apoptosis and maintaining AMH expression[J]. Front Endocrinol(Lausanne), 2022,13:895095. doi: 10.3389/fendo.2022.895095. |
[1] | ZHANG Jiang-lin, YUAN Hai-ning, ZHANG Yun-jie, LI Heng-bing, YUAN Li-hua, SUN Zhen-gao. Research Progress on the Mechanisms of Oocyte Aging [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(2): 144-149. |
[2] | WANG Lin, XU Jian. Influencing Factors of Ovarian Tissue Vitrification and Transplantation Techniques [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 47-53. |
[3] | XU Qiang, ZHANG Man-li, LA Xiao-lin. Mitochondrial Abnormalities in Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 54-58. |
[4] | YANG Qin, WANG Han-ting, CAO Yuan-yuan, ZHOU Jun, WANG Gui-ling. Effect of Resveratrol on the Function of Ovarian Granulose Cells [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 524-528. |
[5] | GAO Zheng, LI Meng-yuan, LI Bo, LIANG Jing-qiao, ZHANG Ya-dong, XU Xin. Efficacy of Chinese Medicine Compound on Abnormal Glucose and Lipid Metabolism in Patients with Obese Polycystic Ovary Syndrome: A Meta Analysis [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 368-377. |
[6] | JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian. Research Progress on the Correlation between Oxidative Stress and Aneuploidy in Oocytes of Aging Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 415-419. |
[7] | LI Jia-li, TU Xu-xu, WANG Shi-meng, NIU Ding-ren, FENG Xiao-ling. Recurrent Spontaneous Abortion Related to Oxidative Stress at Maternal-Fetal Interface [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 435-440. |
[8] | WANG Dong-xue, BAO Li-li, LIU Shan, YANG Bo. Effect of Modified Flexible Antagonist Protocol on the Outcome of COH in Patients with Normal Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 185-189. |
[9] | QU Hui-ying, GUI Wen-wu. Low-Grade Chronic Inflammation in Polycystic Ovary Syndrome Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 48-52. |
[10] | XIANG Chun-rong, DENG Zhi-min, DAI Fang-fang, CHENG Yan-xiang. Clinical Studies of MSCs and MSCs-Derived Exosomes in Premature Ovarian Insufficiency, and Research Progress [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 492-497. |
[11] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
[12] | HE Yue, CUI Hong-mei. Research Progress of Ferroptosis in Obstetric Diseases [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 414-418. |
[13] | WANG Tian, MO Shao-kang, HUANG Bing-xue, WEI Lu-xiao, WANG Ling. Oxidative Stress in Ovary-Related Reproductive Disorders [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 317-322. |
[14] | LIU Xu, YANG Ai-jun, LI Ze-wu, SHI Cheng, LIU Li-jun, KONG Xiao-li, WANG Jing-wen. The Mechanism of Platelet-Rich Plasma on Improving Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 329-333. |
[15] | CHEN Qiu-yan, LU Nan, LIU Jia-yin. Clinical Application of Growth Hormone Supplementation in Non-DOR Patients with Previous IVF/ICSI Failure [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 184-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||