Journal of International Reproductive Health/Family Planning ›› 2021, Vol. 40 ›› Issue (4): 306-309.doi: 10.12280/gjszjk.20200653
• Review • Previous Articles Next Articles
ZHANG Meng-hui, LIU Xiao-cong△, GUO Yi-hong△()
Received:
2020-11-19
Published:
2021-07-15
Online:
2021-07-27
Contact:
GUO Yi-hong
E-mail:13613863710@163.com
ZHANG Meng-hui, LIU Xiao-cong, GUO Yi-hong. N6-Methyladenosine in Reproductive System: Effect and Regulation[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(4): 306-309.
Add to citation manager EndNote|Ris|BibTeX
[1] |
张奕, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4):275-288. doi: 10.16288/j.yczz.16-049.
doi: 10.16288/j.yczz.16-049 |
[2] |
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci U S A, 1974, 71(10):3971-3975. doi: 10.1073/pnas.71.10.3971.
doi: 10.1073/pnas.71.10.3971 pmid: 4372599 |
[3] |
Shu X, Cao J, Cheng M, et al. A metabolic labeling method detects m(6)A transcriptome-wide at single base resolution[J]. Nat Chem Biol, 2020, 16(8):887-895. doi: 10.1038/s41589-020-0526-9.
doi: 10.1038/s41589-020-0526-9 URL |
[4] |
Wang Y, Xiao Y, Dong S, et al. Antibody-free enzyme-assisted chemical approach for detection of N(6)-methyladenosine[J]. Nat Chem Biol, 2020, 16(8):896-903. doi: 10.1038/s41589-020-0525-x.
doi: 10.1038/s41589-020-0525-x pmid: 32341502 |
[5] |
Zhang Y, Hamada M. DeepM6ASeq: prediction and characterization of m6A-containing sequences using deep learning[J]. BMC Bioinformatics, 2018, 19(Suppl 19):524. doi: 10.1186/s12859-018-2516-4.
doi: 10.1186/s12859-018-2516-4 URL |
[6] |
Yang Y, Suna BF, Xiao W, et al. Dynamic m6A modification and its emerging regulatory role in mRNA splicing[J]. Sci Bull, 2015, 60(1):21-32,2. doi: 10.1007/s11434-014-0695-6.
doi: 10.1007/s11434-014-0695-6 URL |
[7] |
Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs[J]. Elife, 2017, 6:e31311. doi: 10.7554/eLife.31311.
doi: 10.7554/eLife.31311 URL |
[8] |
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency[J]. Cell, 2015, 161(6):1388-1399. doi: 10.1016/j.cell.2015.05.014.
doi: 10.1016/j.cell.2015.05.014 URL |
[9] |
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481):117-120. doi: 10.1038/nature12730.
doi: 10.1038/nature12730 URL |
[10] |
Wang YK, Yu XX, Liu YH, et al. Reduced nucleic acid methylation impairs meiotic maturation and developmental potency of pig oocytes[J]. Theriogenology, 2018, 121:160-167. doi: 10.1016/j.theriogenology.2018.08.009.
doi: 10.1016/j.theriogenology.2018.08.009 URL |
[11] |
Sui X, Hu Y, Ren C, et al. METTL3-mediated m(6)A is required for murine oocyte maturation and maternal-to-zygotic transition[J]. Cell Cycle, 2020, 19(4):391-404. doi: 10.1080/15384101.2019. 1711324.
doi: 10.1080/15384101.2019. 1711324 URL |
[12] |
Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development[J]. PLoS Genet, 2018, 14(5):e1007412. doi: 10.1371/journal.pgen.1007412.
doi: 10.1371/journal.pgen.1007412 URL |
[13] |
Hu Y, Ouyang Z, Sui X, et al. Oocyte competence is maintained by m(6)A methyltransferase KIAA1429-mediated RNA metabolism during mouse follicular development[J]. Cell Death Differ, 2020, 27(8):2468-2483. doi: 10.1038/s41418-020-0516-1.
doi: 10.1038/s41418-020-0516-1 URL |
[14] |
Zhao BS, Wang X, Beadell AV, et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition[J]. Nature, 2017, 542(7642):475-478. doi: 10.1038/nature21355.
doi: 10.1038/nature21355 URL |
[15] |
Ivanova I, Much C, Di Giacomo M, et al. The RNA m6A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence[J]. Mol Cell, 2017, 67(6):1059-1067.e4. doi: 10.1016/j.molcel.2017.08.003.
doi: S1097-2765(17)30577-4 pmid: 28867294 |
[16] |
Ding C, Zou Q, Ding J, et al. Increased N6-methyladenosine causes infertility is associated with FTO expression[J]. J Cell Physiol, 2018, 233(9):7055-7066. doi: 10.1002/jcp.26507.
doi: 10.1002/jcp.26507 URL |
[17] |
Huang B, Ding C, Zou Q, et al. Cyclophosphamide Regulates N6-Methyladenosine and m6A RNA Enzyme Levels in Human Granulosa Cells and in Ovaries of a Premature Ovarian Aging Mouse Model[J]. Front Endocrinol (Lausanne), 2019, 10:415. doi: 10.3389/fendo.2019.00415.
doi: 10.3389/fendo.2019.00415 URL |
[18] |
Zhang S, Deng W, Liu Q, et al. Altered m(6) A modification is involved in up-regulated expression of FOXO3 in luteinized granulosa cells of non-obese polycystic ovary syndrome patients[J]. J Cell Mol Med, 2020, 24(20):11874-11882. doi: 10.1111/jcmm.15807.
doi: 10.1111/jcmm.15807 URL |
[19] |
Xia H, Zhong C, Wu X, et al. Mettl3 Mutation Disrupts Gamete Maturation and Reduces Fertility in Zebrafish[J]. Genetics, 2018, 208(2):729-743. doi: 10.1534/genetics.117.300574.
doi: 10.1534/genetics.117.300574 URL |
[20] |
Yang Y, Huang W, Huang JT, et al. Increased N6-methyladenosine in Human Sperm RNA as a Risk Factor for Asthenozoospermia[J]. Sci Rep, 2016, 6:24345. doi: 10.1038/srep24345.
doi: 10.1038/srep24345 URL |
[21] |
千丽, 郭艺红. 腹型肥胖对精液参数影响的研究进展[J]. 国际生殖健康/计划生育杂志, 2018, 37(6):481-485. doi: 10.3969/j.issn.1674-1889.2018.06.009.
doi: 10.3969/j.issn.1674-1889.2018.06.009 |
[22] |
Chen Y, Wang J, Xu D, et al. m(6)A mRNA methylation regulates testosterone synjournal through modulating autophagy in Leydig cells[J]. Autophagy, 2021, 17(2):457-475. doi: 10.1080/15548627. 2020.1720431.
doi: 10.1080/15548627. 2020.1720431 URL |
[23] |
Xu K, Yang Y, Feng GH, et al. Mettl3-mediated m(6)A regulates spermatogonial differentiation and meiosis initiation[J]. Cell Res, 2017, 27(9):1100-1114. doi: 10.1038/cr.2017.100.
doi: 10.1038/cr.2017.100 URL |
[24] |
Lin Z, Hsu PJ, Xing X, et al. Mettl3-/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis[J]. Cell Res, 2017, 27(10):1216-1230. doi: 10.1038/cr.2017.117.
doi: 10.1038/cr.2017.117 URL |
[25] |
Kleene KC. Connecting cis-elements and trans-factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells[J]. Reproduction, 2013, 146(1):R1-R19. doi: 10.1530/REP-12-0362.
doi: 10.1530/REP-12-0362 URL |
[26] |
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29. doi: 10.1016/j.molcel.2012.10.015.
doi: 10.1016/j.molcel.2012.10.015 URL |
[27] |
Tang C, Klukovich R, Peng H, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells[J]. Proc Natl Acad Sci U S A, 2018, 115(2):E325-E333. doi: 10.1073/pnas.1717794115.
doi: 10.1073/pnas.1717794115 URL |
[28] |
Huang T, Guo J, Lv Y, et al. Meclofenamic acid represses spermatogonial proliferation through modulating m(6)A RNA modification[J]. J Anim Sci Biotechnol, 2019, 10:63. doi: 10.1186/s40104-019-0361-6.
doi: 10.1186/s40104-019-0361-6 URL |
[29] |
Bailey AS, Batista PJ, Gold RS, et al. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline[J]. Elife, 2017, 6 :e26116. doi: 10.7554/eLife.26116.
doi: 10.7554/eLife.26116 URL |
[30] |
Jain D, Puno MR, Meydan C, et al. ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2[J]. Elife, 2018, 7:e30919. doi: 10.7554/eLife.30919.
doi: 10.7554/eLife.30919 URL |
[1] | ZHANG Rui-yan, DENG Han-yu, CHEN Ke-xin, MA Zhuo-yao, LIU Yue, DING Zhi-de. The Research Advances in Sperm Maturation and Paternal Epigenetic Inheritance Regulated by Epididymosomes [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 518-523. |
[2] | JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian. Research Progress on the Correlation between Oxidative Stress and Aneuploidy in Oocytes of Aging Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 415-419. |
[3] | LI Jia-li, TU Xu-xu, WANG Shi-meng, NIU Ding-ren, FENG Xiao-ling. Recurrent Spontaneous Abortion Related to Oxidative Stress at Maternal-Fetal Interface [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 435-440. |
[4] | JIAO Meng-wen, ZHANG Yue-wen, WANG Ling, MO Shao-kang. Advances in CircRNAs Research in Reproductive System [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 322-327. |
[5] | ZHAO An-qi, LIU Lin, TAN Xiao-fang. HPV Transmission through Sperm and Its Impact on Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 328-331. |
[6] | WU Zhu-lian, WANG Cai-zhu, ZHOU Hong, CHEN Huan-hua, LIN Ruo-yun, SHU Jin-hui. Research Progress on the Cryopreservation of Small Numbers of Human Sperm [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 222-227. |
[7] | LIANG Yue, DONG Jie, XIAO Xi-feng, WANG Xiao-hong. Advancements of MiR-202 in Reproductive Modulation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 228-233. |
[8] | GAO Zhao-yang, ZHANG Ning-qing, CHEN Qiong-hua, WU Rong-feng. The Role of CircRNAs in Follicular Granulosa Cells of Patients with Endometriosis Infertility [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 243-248. |
[9] | WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, XIA Tian. Immunometabolic Microenvironment at the Maternal-Fetal Interface Regulating Embryo Implantation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 138-143. |
[10] | DAI He-qi, MAO Fei, FENG Rui-zhi, QIAN Yun. The Role of LncRNA as CeRNA in Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 144-149. |
[11] | CHU Man-wei, CHEN Huan-huan, WANG Qian, WANG Yi-wen, LI Dan, YANG Shu-jun, ZHANG Cui-lian. The Mechanism of MiR-20a in Common Gynecological Malignant Tumors [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 172-176. |
[12] | ZHANG Rong-xue, WANG Miao-miao, JIA Yuan-yuan, XUE Hui-ying. Study on the Vaginal Microbiota in Patients with Repeated Implantation Failure [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 89-94. |
[13] | WEN Xing-xing, CHAI Meng-han, YANG Ni, ZOU Hui-juan, ZHANG Zhi-guo, LI Lin, CHEN Bei-li. A Case of Oocyte Maturation Arrest Caused by Heterozygous Variation of TUBB8 Gene c.154-156del [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 17-19. |
[14] | ZHANG Yu-jie, WANG Wen-cheng, ZHANG Ning. Research Progress of GDF-9 and BMP-15 on Follicular Development and Insulin Resistance in PCOS [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 487-491. |
[15] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||