国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (2): 130-134.doi: 10.12280/gjszjk.20220473
收稿日期:
2022-10-10
出版日期:
2023-03-15
发布日期:
2023-03-21
通讯作者:
张云山
E-mail:zjnkzys@163.com
CHEN Ruo-lin, ZHANG Yun-shan()
Received:
2022-10-10
Published:
2023-03-15
Online:
2023-03-21
Contact:
ZHANG Yun-shan
E-mail:zjnkzys@163.com
摘要:
精子发生是维持和促进男性生育能力的重要过程,涉及多种细胞类型、调控分子、修复机制和表观遗传调控因子。在生精后期,由于精子DNA修复系统功能失调和活性氧的过量产生,对细胞核和线粒体DNA造成损伤,引起精子发生与凋亡异常,降低自然妊娠的概率。精子DNA损伤的机制主要包括复制错误和精子DNA片段化(sperm DNA fragmentation,SDF)。SDF可能与男性不育、辅助生殖结局以及后代的生长发育有关。临床上通过检测SDF水平评估DNA损伤程度。研究精子DNA损伤的发生及其潜在机制有助于临床上改善不孕症患者的临床治疗结局。综述精子发生、精原细胞调节和精子分化的过程,并介绍DNA损伤机制的研究现状及其对辅助生殖结局的影响。
陈若霖, 张云山. 精子DNA损伤的机制和临床相关性[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 130-134.
CHEN Ruo-lin, ZHANG Yun-shan. Mechanisms and Clinical Relevance of Sperm DNA Damage[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 130-134.
[1] |
Kuchakulla M, Narasimman M, Khodamoradi K, et al. How defective spermatogenesis affects sperm DNA integrity[J]. Andrologia, 2021, 53(1):e13615. doi: 10.1111/and.13615.
doi: 10.1111/and.13615 |
[2] |
Simon L, Murphy K, Shamsi MB, et al. Paternal influence of sperm DNA integrity on early embryonic development[J]. Hum Reprod, 2014, 29(11):2402-2412. doi: 10.1093/humrep/deu228.
doi: 10.1093/humrep/deu228 URL |
[3] |
Tímermans A, Vázquez R, Otero F, et al. DNA fragmentation of human spermatozoa: Simple assessment of single- and double-strand DNA breaks and their respective dynamic behavioral response[J]. Andrology, 2020, 8(5):1287-1303. doi: 10.1111/andr.12819.
doi: 10.1111/andr.12819 pmid: 32416007 |
[4] |
Zhang Y, Zhang W, Wu X, et al. Effect of varicocele on sperm DNA damage: A systematic review and meta-analysis[J]. Andrologia, 2022, 54(1):e14275. doi: 10.1111/and.14275.
doi: 10.1111/and.14275 |
[5] |
Ribas-Maynou J, Benet J. Single and Double Strand Sperm DNA Damage: Different Reproductive Effects on Male Fertility[J]. Genes(Basel), 2019, 10(2):105. doi: 10.3390/genes10020105.
doi: 10.3390/genes10020105 |
[6] |
Bibi R, Jahan S, Razak S, et al. Protamines and DNA integrity as a biomarkers of sperm quality and assisted conception outcome[J]. Andrologia, 2022, 54(6):e14418. doi: 10.1111/and.14418.
doi: 10.1111/and.14418 |
[7] |
Zhu W, Jiang L, Pan C, et al. Deoxyribonucleic acid methylation signatures in sperm deoxyribonucleic acid fragmentation[J]. Fertil Steril, 2021, 116(5):1297-1307. doi: 10.1016/j.fertnstert.2021.06.025.
doi: 10.1016/j.fertnstert.2021.06.025 pmid: 34253331 |
[8] |
Hekim N, Gunes S, Asci R, et al. Semiquantitative promoter methylation of MLH1 and MSH2 genes and their impact on sperm DNA fragmentation and chromatin condensation in infertile men[J]. Andrologia, 2021, 53(1):e13827. doi: 10.1111/and.13827.
doi: 10.1111/and.13827 |
[9] |
Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility[J]. Reprod Biomed Online, 2015, 31(3):309-319. doi: 10.1016/j.rbmo.2015.06.010.
doi: 10.1016/j.rbmo.2015.06.010 pmid: 26206278 |
[10] |
Huang C, Gong H, Mu B, et al. BAF-L Modulates Histone-to-Protamine Transition during Spermiogenesis[J]. Int J Mol Sci, 2022, 23(4): 1985. doi: 10.3390/ijms23041985.
doi: 10.3390/ijms23041985 URL |
[11] |
Gustafson EA, Seymour KA, Sigrist K, et al. ZFP628 Is a TAF4b-Interacting Transcription Factor Required for Mouse Spermiogenesis[J]. Mol Cell Biol, 2020, 40(7):e00228-19. doi: 10.1128/MCB.00228-19.
doi: 10.1128/MCB.00228-19 |
[12] |
Fraczek M, Lewandowska A, Budzinska M, et al. The Role of Seminal Oxidative Stress Scavenging System in the Pathogenesis of Sperm DNA Damage in Men Exposed and Not Exposed to Genital Heat Stress[J]. Int J Environ Res Public Health, 2022, 19(5):2713. doi: 10.3390/ijerph19052713.
doi: 10.3390/ijerph19052713 URL |
[13] |
Sharma R, Harlev A, Agarwal A, et al. Cigarette Smoking and Semen Quality: A New Meta-analysis Examining the Effect of the 2010 World Health Organization Laboratory Methods for the Examination of Human Semen[J]. Eur Urol, 2016, 70(4):635-645. doi: 10.1016/j.eururo.2016.04.010.
doi: S0302-2838(16)30069-0 pmid: 27113031 |
[14] |
Berg E, Houska P, Nesheim N, et al. Chronic Prostatitis/Chronic Pelvic Pain Syndrome Leads to Impaired Semen Parameters, Increased Sperm DNA Fragmentation and Unfavorable Changes of Sperm Protamine mRNA Ratio[J]. Int J Mol Sci, 2021, 22(15):7854. doi: 10.3390/ijms22157854.
doi: 10.3390/ijms22157854 URL |
[15] |
Hologlu D, Gunes S, Asci R, et al. Association among sperm chromatin condensation, sperm DNA fragmentation and 8-OHdG in seminal plasma and semen parameters in infertile men with oligoasthenoteratozoospermia[J]. Andrologia, 2022, 54(1):e14268. doi: 10.1111/and.14268.
doi: 10.1111/and.14268 |
[16] |
Liu KS, Mao XD, Pan F, et al. Application of leukocyte subsets and sperm DNA fragment rate in infertile men with asymptomatic infection of genital tract[J]. Ann Palliat Med, 2021, 10(2):1021. doi: 10.21037/apm-19-597.
doi: 10.21037/apm-19-597 URL |
[17] |
Monteiro BS, Freire-Brito L, Carrageta DF, et al. Mitochondrial Uncoupling Proteins (UCPs) as Key Modulators of ROS Homeostasis: A Crosstalk between Diabesity and Male Infertility?[J]. Antioxidants(Basel), 2021, 10(11):1746. doi: 10.3390/antiox 10111746.
doi: 10.3390/antiox 10111746 |
[18] |
Ferigolo PC, Ribeiro de Andrade MB, Camargo M, et al. Sperm functional aspects and enriched proteomic pathways of seminal plasma of adult men with obesity[J]. Andrology, 2019, 7(3):341-349. doi: 10.1111/andr.12606.
doi: 10.1111/andr.12606 pmid: 30891897 |
[19] |
Shafiei-Roudbari SK, Malekinejad H, Janbaz-Aciabar H, et al. Crosstalk between E2F1 and P53 transcription factors in doxorubicin-induced DNA damage: evidence for preventive/protective effects of silymarin[J]. J Pharm Pharmacol, 2017, 69(9):1116-1124. doi: 10.1111/jphp.12745.
doi: 10.1111/jphp.12745 URL |
[20] |
Sharma V, Collins LB, Chen TH, et al. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations[J]. Oncotarget, 2016, 7(18):25377-25390. doi: 10.18632/oncotarget.8298.
doi: 10.18632/oncotarget.8298 pmid: 27015367 |
[21] |
Rahbar S, Novin MG, Alizadeh E, et al. New insights into the expression profile of MicroRNA-34c and P53 in infertile men spermatozoa and testicular tissue[J]. Cell Mol Biol(Noisy-le-grand), 2017, 63(8):77-83. doi: 10.14715/cmb/2017.63.8.17.
doi: 10.14715/cmb/2017.63.8.17 |
[22] |
Guo H, Chen L, Cui H, et al. Research Advances on Pathways of Nickel-Induced Apoptosis[J]. Int J Mol Sci, 2015, 17(1):10. doi: 10.3390/ijms17010010.
doi: 10.3390/ijms17010010 URL |
[23] |
Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion[J]. Fertil Steril, 2015, 103(3):e18-e25. doi: 10.1016/j.fertnstert.2014.12.103.
doi: 10.1016/j.fertnstert.2014.12.103 |
[24] |
Ambar RF, Agarwal A, Majzoub A, et al. The Use of Testicular Sperm for Intracytoplasmic Sperm Injection in Patients with High Sperm DNA Damage: A Systematic Review[J]. World J Mens Health, 2021, 39(3):391-398. doi: 10.5534/wjmh.200084.
doi: 10.5534/wjmh.200084 URL |
[25] |
Cortés-Gutiérrez EI, Fernández JL, Dávila-Rodríguez MI, et al. Two-Tailed Comet Assay (2T-Comet): Simultaneous Detection of DNA Single and Double Strand Breaks[J]. Methods Mol Biol, 2017, 1560:285-293. doi: 10.1007/978-1-4939-6788-9_22.
doi: 10.1007/978-1-4939-6788-9_22 pmid: 28155163 |
[26] |
Simon L, Emery B, Carrell DT. Sperm DNA Fragmentation: Consequences for Reproduction[J]. Adv Exp Med Biol, 2019, 1166:87-105. doi: 10.1007/978-3-030-21664-1_6.
doi: 10.1007/978-3-030-21664-1_6 pmid: 31301048 |
[27] |
Sugihara A, Van Avermaete F, Roelant E, et al. The role of sperm DNA fragmentation testing in predicting intra-uterine insemination outcome: A systematic review and meta-analysis[J]. Eur J Obstet Gynecol Reprod Biol, 2020, 244:8-15. doi: 10.1016/j.ejogrb.2019.10.005.
doi: S0301-2115(19)30447-6 pmid: 31707171 |
[28] |
Steiner AZ, Hansen KR, Barnhart KT, et al. The effect of antioxidants on male factor infertility: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial[J]. Fertil Steril, 2020, 113(3):552-560.e3. doi: 10.1016/j.fertnstert.2019.11.008.
doi: S0015-0282(19)32547-6 pmid: 32111479 |
[29] |
Simon L, Zini A, Dyachenko A, et al. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome[J]. Asian J Androl, 2017, 19(1):80-90. doi: 10.4103/1008-682X.182822.
doi: 10.4103/1008-682X.182822 pmid: 27345006 |
[30] |
Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline[J]. Fertil Steril, 2013, 99(3):673-677. doi: 10.1016/j.fertnstert.2012.12.049.
doi: 10.1016/j.fertnstert.2012.12.049 pmid: 23391408 |
[31] |
Zhao J, Zhang Q, Wang Y, et al. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis[J]. Fertil Steril, 2014, 102(4):998-1005. e8. doi: 10.1016/j.fertnstert.2014.06.033.
doi: 10.1016/j.fertnstert.2014.06.033 URL |
[32] |
Ribas-Maynou J, Yeste M, Becerra-Tomás N, et al. Clinical implications of sperm DNA damage in IVF and ICSI: updated systematic review and meta-analysis[J]. Biol Rev Camb Philos Soc, 2021, 96(4):1284-1300. doi: 10.1111/brv.12700.
doi: 10.1111/brv.12700 pmid: 33644978 |
[33] |
Liperis G, Sharma K, Ammar OF, et al. #ESHREjc report: are sperm selection techniques a panacea? Indications for the use of physiological intracytoplasmic sperm injection (PICSI) in medically assisted reproduction[J]. Hum Reprod, 2022, 37(10):2492-2496. doi: 10.1093/humrep/deac182.
doi: 10.1093/humrep/deac182 URL |
[34] |
Ganeva R, Parvanov D, Velikova D, et al. Sperm morphology and DNA fragmentation after zona pellucida selection[J]. Reprod Fertil, 2021, 2(3):221-230. doi: 10.1530/RAF-21-0041.
doi: 10.1530/RAF-21-0041 pmid: 35118392 |
[35] |
Panner Selvam MK, Ambar RF, Agarwal A, et al. Etiologies of sperm DNA damage and its impact on male infertility[J]. Andrologia, 2021, 53(1):e13706. doi: 10.1111/and.13706.
doi: 10.1111/and.13706 |
[1] | 宋丹妮, 朱蓉, 蒲丛珊, 王义婷, 姜微微, 胡双, 单春剑. 辅助生殖技术助孕患者痛苦表露的潜在剖面分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 441-446. |
[2] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[3] | 宫政, 王聪, 宋佳怡, 夏天. 基于数据挖掘探讨中医药在辅助生殖技术中的分期应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 361-367. |
[4] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[5] | 江楠, 赵晓丽, 栾祖乾, 黄志云, 夏天. 高龄女性卵母细胞内氧化应激与非整倍体相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 415-419. |
[6] | 罗莎莎, 王德婧. 冻融胚胎移植妊娠结局相关影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 420-424. |
[7] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[8] | 焦梦文, 张月文, 王玲, 莫少康. 环状RNA在生殖系统的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 322-327. |
[9] | 赵安琪, 刘霖, 谭小方. HPV经精子传播及其对早期胚胎发育的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 328-331. |
[10] | 李宁, 张安妮, 何晓霞, 张学红. 冻融胚胎移植后妊娠期高血压疾病发生的列线图预测模型构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 177-184. |
[11] | 梁越, 董杰, 肖西峰, 王晓红. miR-202在生殖调控中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 228-233. |
[12] | 贺晴雯, 李喜红. 辅助生殖技术助孕患者的睡眠障碍及非药物干预的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 234-237. |
[13] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
[14] | 郝佳丽, 何玉洁. 不孕不育人群生育生活质量评价及其影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 159-165. |
[15] | 李婷婷, 谭小方, 施蔚虹. 辅助生殖技术助孕后三胎合并双胎反向动脉灌注序列征一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 24-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||