国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (1): 44-49.doi: 10.12280/gjszjk.20220506
收稿日期:
2022-10-28
出版日期:
2023-01-15
发布日期:
2023-02-03
通讯作者:
钱云
E-mail:qianyun@njmu.edu.cn
CHANG Tian-qing, WU Hua, FENG Rui-zhi, QIAN Yun()
Received:
2022-10-28
Published:
2023-01-15
Online:
2023-02-03
Contact:
QIAN Yun
E-mail:qianyun@njmu.edu.cn
摘要:
受精是新生命诞生的第一步,在此过程中,精子将所携带的单倍体遗传物质与卵子的单倍体遗传物质融合成双倍体合子。哺乳动物的受精过程涉及到一系列复杂而精细的活动,如精子的超活化与获能、顶体反应以及精卵结合等。精子顶体是一种特殊的膜细胞器,具有帽状结构并覆盖在精子的细胞核前部,在受精过程中发挥着关键作用。顶体的形成主要包括囊泡形成、囊泡运输、囊泡融合和顶体与细胞核结合等过程,其独特的蛋白运输机制需要内质网、高尔基体等细胞器以及某些特殊结构之间的相互配合。顶体形成是精子细胞分化为精子的关键步骤之一,受多基因精细调控,其发育缺陷与包括圆头精子症在内的多种男性不育症有关。综述近年精子顶体发育过程中主要生物学事件的发生顺序中相关蛋白的研究,并介绍了自噬相关蛋白对顶体发育过程作用的新近研究,以期为男性不育症的诊疗提供新思路。
常天晴, 吴华, 冯睿芝, 钱云. 精子顶体发育相关蛋白的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 44-49.
CHANG Tian-qing, WU Hua, FENG Rui-zhi, QIAN Yun. Research Progress of Proteins Related to Sperm Acrosome Development[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 44-49.
[1] |
Huang Q, Liu Y, Zhang S, et al. Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice[J]. Autophagy, 2021, 17(7):1753-1767. doi: 10.1080/15548627.2020.1783822.
doi: 10.1080/15548627.2020.1783822 URL |
[2] |
Liu C, Song Z, Wang L, et al. Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice[J]. Development, 2017, 144(3):441-451. doi: 10.1242/dev.147074.
doi: 10.1242/dev.147074 pmid: 28003215 |
[3] |
Kang-Decker N, Mantchev GT, Juneja SC, et al. Lack of acrosome formation in Hrb-deficient mice[J]. Science, 2001, 294(5546):1531-1533. doi: 10.1126/science.1063665.
doi: 10.1126/science.1063665 pmid: 11711676 |
[4] |
Da Costa R, Bordessoules M, Guilleman M, et al. Vps13b is required for acrosome biogenesis through functions in Golgi dynamic and membrane trafficking[J]. Cell Mol Life Sci, 2020, 77(3):511-529. doi: 10.1007/s00018-019-03192-4.
doi: 10.1007/s00018-019-03192-4 pmid: 31218450 |
[5] |
Castaneda JM, Shimada K, Satouh Y, et al. FAM209 associates with DPY19L2, and is required for sperm acrosome biogenesis and fertility in mice[J]. J Cell Sci, 2021, 134(21):jcs259206. doi: 10.1242/jcs.259206.
doi: 10.1242/jcs.259206 URL |
[6] |
Morohoshi A, Miyata H, Oyama Y, et al. FAM71F1 binds to RAB2A and RAB2B and is essential for acrosome formation and male fertility in mice[J]. Development, 2021, 148(21):dev199644. doi: 10.1242/dev.199644.
doi: 10.1242/dev.199644 URL |
[7] |
Seifert W, Kühnisch J, Maritzen T, et al. Cohen syndrome-associated protein COH1 physically and functionally interacts with the small GTPase RAB6 at the Golgi complex and directs neurite outgrowth[J]. J Biol Chem, 2015, 290(6):3349-3358. doi: 10.1074/jbc.M114.608174.
doi: 10.1074/jbc.M114.608174 pmid: 25492866 |
[8] |
Ding X, Jiang X, Tian R, et al. RAB2 regulates the formation of autophagosome and autolysosome in mammalian cells[J]. Autophagy, 2019, 15(10):1774-1786. doi: 10.1080/15548627.2019.1596478.
doi: 10.1080/15548627.2019.1596478 pmid: 30957628 |
[9] |
Malcher A, Rozwadowska N, Stokowy T, et al. Potential biomarkers of nonobstructive azoospermia identified in microarray gene expression analysis[J]. Fertil Steril, 2013, 100(6):1686-1694.e1-7. doi: 10.1016/j.fertnstert.2013.07.1999.
doi: 10.1016/j.fertnstert.2013.07.1999 pmid: 24012201 |
[10] |
Gamallat Y, Fang X, Mai H, et al. Bi-allelic mutation in Fsip1 impairs acrosome vesicle formation and attenuates flagellogenesis in mice[J]. Redox Biol, 2021, 43:101969. doi: 10.1016/j.redox.2021.101969.
doi: 10.1016/j.redox.2021.101969 URL |
[11] |
Fang X, Gamallat Y, Chen Z, et al. Hypomorphic and hypermorphic mouse models of Fsip2 indicate its dosage-dependent roles in sperm tail and acrosome formation[J]. Development, 2021, 148(11):dev199216. doi: 10.1242/dev.199216.
doi: 10.1242/dev.199216 URL |
[12] |
Zheng R, Wang Y, Li Y, et al. FSIP2 plays a role in the acrosome development during spermiogenesis[J]. J Med Genet, 2022 Jun 2: jmedgenet-2021-108406. doi: 10.1136/jmedgenet-2021-108406. Epub ahead of print.
doi: 10.1136/jmedgenet-2021-108406 |
[13] |
Gudimchuk N, Tarasovetc EV, Mustyatsa V, et al. Probing Mitotic CENP-E Kinesin with the Tethered Cargo Motion Assay and Laser Tweezers[J]. Biophys J, 2018, 114(11):2640-2652. doi: 10.1016/j.bpj.2018.04.017.
doi: S0006-3495(18)30463-6 pmid: 29874614 |
[14] |
She ZY, Yu KW, Wei YL, et al. Kinesin-7 CENP-E regulates the formation and structural maintenance of the acrosome[J]. Cell Tissue Res, 2021, 383(3):1167-1182. doi: 10.1007/s00441-020-03341-3.
doi: 10.1007/s00441-020-03341-3 URL |
[15] |
Guidi LG, Holloway ZG, Arnoult C, et al. AU040320 deficiency leads to disruption of acrosome biogenesis and infertility in homozygous mutant mice[J]. Sci Rep, 2018, 8(1):10379. doi: 10.1038/s41598-018-28666-6.
doi: 10.1038/s41598-018-28666-6 pmid: 29991750 |
[16] |
Huang B, Li X, Zhu X. The Role of GM130 in Nervous System Diseases[J]. Front Neurol, 2021, 12:743787. doi: 10.3389/fneur.2021.743787.
doi: 10.3389/fneur.2021.743787 URL |
[17] |
Han F, Liu C, Zhang L, et al. Globozoospermia and lack of acrosome formation in GM130-deficient mice[J]. Cell Death Dis, 2017, 8(1):e2532. doi: 10.1038/cddis.2016.414.
doi: 10.1038/cddis.2016.414 URL |
[18] |
Follit JA, San Agustin JT, Xu F, et al. The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex[J]. PLoS Genet, 2008, 4(12):e1000315. doi: 10.1371/journal.pgen.1000315.
doi: 10.1371/journal.pgen.1000315 URL |
[19] |
Zhang Z, Li W, Zhang Y, et al. Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice[J]. Mol Biol Cell, 2016, 27(23):3705-3716. doi: 10.1091/mbc.E16-05-0318.
doi: 10.1091/mbc.E16-05-0318 URL |
[20] |
Wang Z, Shi Y, Ma S, et al. Abnormal fertility, acrosome formation, IFT20 expression and localization in conditional Gmap210 knockout mice[J]. Am J Physiol Cell Physiol, 2020, 318(1):C174-C190. doi: 10.1152/ajpcell.00517.2018.
doi: 10.1152/ajpcell.00517.2018 URL |
[21] |
Wang M, Liu X, Chang G, et al. Single-Cell RNA Sequencing Analysis Reveals Sequential Cell Fate Transition during Human Spermatogenesis[J]. Cell Stem Cell, 2018, 23(4):599-614.e4. doi: 10.1016/j.stem.2018.08.007.
doi: S1934-5909(18)30392-8 pmid: 30174296 |
[22] |
Shi X, Yao Y, Wang Y, et al. Cep70 regulates microtubule stability by interacting with HDAC6[J]. FEBS Lett, 2015, 589(15):1771-1777. doi: 10.1016/j.febslet.2015.06.017.
doi: 10.1016/j.febslet.2015.06.017 pmid: 26112604 |
[23] |
Liu Q, Guo Q, Guo W, et al. Loss of CEP70 function affects acrosome biogenesis and flagella formation during spermiogenesis[J]. Cell Death Dis, 2021, 12(5):478. doi: 10.1038/s41419-021-03755-z.
doi: 10.1038/s41419-021-03755-z pmid: 33980814 |
[24] |
Shang YL, Zhu FX, Yan J, et al. Novel DPY19L2 variants in globozoospermic patients and the overcoming this male infertility[J]. Asian J Androl, 2019, 21(2):183-189. doi: 10.4103/aja.aja_79_18.
doi: 10.4103/aja.aja_79_18 URL |
[25] |
Wang W, Tu C, Nie H, et al. Biallelic mutations in CFAP65 lead to severe asthenoteratospermia due to acrosome hypoplasia and flagellum malformations[J]. J Med Genet, 2019, 56(11):750-757. doi: 10.1136/jmedgenet-2019-106031.
doi: 10.1136/jmedgenet-2019-106031 URL |
[26] |
Wang W, Tian S, Nie H, et al. CFAP65 is required in the acrosome biogenesis and mitochondrial sheath assembly during spermiogenesis[J]. Hum Mol Genet, 2021, 30(23):2240-2254. doi: 10.1093/hmg/ddab185.
doi: 10.1093/hmg/ddab185 pmid: 34231842 |
[27] |
Zhang XZ, Wei LL, Zhang XH, et al. Loss of perinuclear theca ACTRT1 causes acrosome detachment and severe male subfertility in mice[J]. Development, 2022, 149(12):dev200489. doi: 10.1242/dev.200489.
doi: 10.1242/dev.200489 URL |
[28] |
Castillo J, Knol JC, Korver CM, et al. Human Testis Phosphoproteome Reveals Kinases as Potential Targets in Spermatogenesis and Testicular Cancer[J]. Mol Cell Proteomics, 2019, 18(Suppl 1):S132-S144. doi: 10.1074/mcp.RA118.001278.
doi: 10.1074/mcp.RA118.001278 URL |
[29] |
Crapster JA, Rack PG, Hellmann ZJ, et al. HIPK4 is essential for murine spermiogenesis[J]. Elife, 2020, 9:e50209. doi: 10.7554/eLife.50209.
doi: 10.7554/eLife.50209 URL |
[30] |
Jiang S, Liang C, Gao Y, et al. Fluoride exposure arrests the acrosome formation during spermatogenesis via down-regulated Zpbp1, Spaca1 and Dpy19l2 expression in rat testes[J]. Chemosphere, 2019, 226:874-882. doi: 10.1016/j.chemosphere.2019.04.019.
doi: S0045-6535(19)30665-4 pmid: 31509916 |
[31] |
Chen P, Saiyin H, Shi R, et al. Loss of SPACA1 function causes autosomal recessive globozoospermia by damaging the acrosome-acroplaxome complex[J]. Hum Reprod, 2021, 36(9):2587-2596. doi: 10.1093/humrep/deab144.
doi: 10.1093/humrep/deab144 URL |
[32] |
Yoshii SR, Mizushima N. Monitoring and Measuring Autophagy[J]. Int J Mol Sci, 2017, 18(9):1865. doi: 10.3390/ijms18091865.
doi: 10.3390/ijms18091865 URL |
[33] |
Shang Y, Wang H, Jia P, et al. Autophagy regulates spermatid differentiation via degradation of PDLIM1[J]. Autophagy, 2016, 12(9):1575-1592. doi: 10.1080/15548627.2016.1192750.
doi: 10.1080/15548627.2016.1192750 pmid: 27310465 |
[34] |
Lei Y, Zhang X, Xu Q, et al. Autophagic elimination of ribosomes during spermiogenesis provides energy for flagellar motility[J]. Dev Cell, 2021, 56(16):2313-2328.e7. doi: 10.1016/j.devcel.2021.07.015.
doi: 10.1016/j.devcel.2021.07.015 pmid: 34428398 |
[35] |
Nian FS, Li LL, Cheng CY, et al. Rab18 Collaborates with Rab7 to Modulate Lysosomal and Autophagy Activities in the Nervous System: an Overlapping Mechanism for Warburg Micro Syndrome and Charcot-Marie-Tooth Neuropathy Type 2B[J]. Mol Neurobiol, 2019, 56(9):6095-6105. doi: 10.1007/s12035-019-1471-z.
doi: 10.1007/s12035-019-1471-z URL |
[36] |
Wang H, Wan H, Li X, et al. Atg7 is required for acrosome biogenesis during spermatogenesis in mice[J]. Cell Res, 2014, 24(7):852-869. doi: 10.1038/cr.2014.70.
doi: 10.1038/cr.2014.70 pmid: 24853953 |
[37] |
Zhang W, Feng Y, Guo Q, et al. SIRT1 modulates cell cycle progression by regulating CHK2 acetylation-phosphorylation[J]. Cell Death Differ, 2020, 27(2):482-496. doi: 10.1038/s41418-019-0369-7.
doi: 10.1038/s41418-019-0369-7 pmid: 31209362 |
[38] |
Huang R, Xu Y, Wan W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation[J]. Mol Cell, 2015, 57(3):456-466. doi: 10.1016/j.molcel.2014.12.013.
doi: 10.1016/j.molcel.2014.12.013 pmid: 25601754 |
[1] | 张睿妍, 邓涵瑜, 陈柯欣, 马梲铫, 刘悦, 丁之德. 附睾小体调节精子成熟和父系表观遗传的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 518-523. |
[2] | 肖楠, 李永程, 姚义鸣, 孙红文, 姚汝强, 陈泳君, 殷宇辰, 罗海宁. 卵巢微环境内邻苯二甲酸酯暴露与炎性因子水平的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 353-360. |
[3] | 谢娱新, 王瑞雪, 陈梦娜, 储继军. 膜联蛋白A家族在母胎界面及不良妊娠中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 430-434. |
[4] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[5] | 焦梦文, 张月文, 王玲, 莫少康. 环状RNA在生殖系统的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 322-327. |
[6] | 赵安琪, 刘霖, 谭小方. HPV经精子传播及其对早期胚胎发育的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 328-331. |
[7] | 吴柱连, 汪彩珠, 周红, 陈焕华, 林若芸, 舒金辉. 微量精子冷冻保存技术研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 222-227. |
[8] | 梁越, 董杰, 肖西峰, 王晓红. miR-202在生殖调控中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 228-233. |
[9] | 甄佳, 赵紫渊, 王子璐, 师伟, 徐丽. 多囊卵巢综合征病理机制中的颗粒细胞自噬[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 150-154. |
[10] | 梁俊霞, 杨堉杰, 张丽, 葛丽娜, 王娜娜, 田瑛, 刘鹏, 闫蒙. 高龄女性IVF/ICSI无可利用胚胎危险因素探讨[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 1-6. |
[11] | 张晓翠, 于丽菲, 杨跃伟, 刘云静, 黄卫东, 伊江燕, 张雪萍. 45,X/46,XY染色体嵌合型不育症一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 20-23. |
[12] | 任露露, 任文超, 张晓轩, 任春娥. 多囊卵巢综合征患者卵巢颗粒细胞胰岛素抵抗的相关信号通路[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 32-37. |
[13] | 崔领兵, 田文艳. 第二性征正常的SRY阴性46,XX男性综合征一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 454-456. |
[14] | 杨玉婷, 惠玲, 陈雪, 张钏, 田芯瑗, 周秉博. 一例产前Silver-Russell综合征胎儿的基因变异分析[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 371-376. |
[15] | 周昕玥, 张安妮, 张学红. m6A甲基化修饰在生殖相关疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 392-397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||