国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (2): 121-125.doi: 10.12280/gjszjk.20200412
收稿日期:
2020-07-14
出版日期:
2021-03-15
发布日期:
2021-03-24
通讯作者:
张军强
E-mail:junqianz@aliyun.com
基金资助:
LANG Peng, SHI Xiao-dan, ZHANG Jun-qiang△()
Received:
2020-07-14
Published:
2021-03-15
Online:
2021-03-24
Contact:
ZHANG Jun-qiang
E-mail:junqianz@aliyun.com
摘要:
精准医学及其前沿技术促进了生殖医学的发展。高通量测序、全基因组关联研究(GWAS)、蛋白质组学技术成功用于不孕不育症的病因诊断、遗传病检测和胚胎植入前遗传学检测(PGT)的临床实践,单细胞全基因组扩增(eWGA)、生物大数据分析等近年也应用于人类配子和胚胎早期发育的研究。例如通过GWAS确定了11个基因座、17个单核苷酸多态性(SNPs)与多囊卵巢综合征(PCOS)有很强的相关性;eWGA应用到PGT中,就可通过分析植入前胚胎中的单个细胞推断出卵子本身的全部基因组信息,从而减少先天性遗传缺陷婴儿的出生,降低辅助生殖的医源性风险;人工智能辅助(AI)方法在体外受精-胚胎移植过程中用于卵母细胞或胚胎选择,显示出越来越大的优势。本文综述精准医学在辅助生殖领域中的应用。
郎鹏, 时晓丹, 张军强. 辅助生殖领域中的精准医学[J]. 国际生殖健康/计划生育, 2021, 40(2): 121-125.
LANG Peng, SHI Xiao-dan, ZHANG Jun-qiang. Precision Medicine in the Field of Assisted Reproduction[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(2): 121-125.
[1] |
König IR, Fuchs O, Hansen G, et al. What is precision medicine?[J]. Eur Respir J, 2017,50(4):1700391. doi: 10.1183/13993003.00391-2017.
doi: 10.1183/13993003.00391-2017 URL pmid: 29051268 |
[2] | 徐鹏辉. 美国启动精准医疗计划[J]. 世界复合医学, 2015(1):44-46. |
[3] |
Lizneva D, Suturina L, Walker W, et al. Criteria, prevalence, and phenotypes of polycystic ovary syndrome[J]. Fertil Steril, 2016,106(1):6-15. doi: 10.1016/j.fertnstert.2016.05.003.
doi: 10.1016/j.fertnstert.2016.05.003 URL pmid: 27233760 |
[4] |
Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment[J]. Nat Rev Endocrinol, 2018,14(5):270-284. doi: 10.1038/nrendo.2018.24.
doi: 10.1038/nrendo.2018.24 URL pmid: 29569621 |
[5] |
Xu JE, Hao C, Ren CE, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3,2p21 and 9q33.3[J]. Nat Genet, 2011,43(1):55-59. doi: 10.1038/ng.732.
doi: 10.1038/ng.732 URL pmid: 21151128 |
[6] |
Shi Y, Zhao H, Shi Y, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome[J]. Nat Genet, 2012,44(9):1020-1025. doi: 10.1038/ng.2384.
doi: 10.1038/ng.2384 URL pmid: 22885925 |
[7] |
Day FR, Hinds DA, Tung JY, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome[J]. Nat Commun, 2015,6:8464. doi: 10.1038/ncomms9464.
doi: 10.1038/ncomms9464 URL pmid: 26416764 |
[8] |
Jones MR, Brower MA, Xu N, et al. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity[J]. PLoS Genet, 2015,11(8):e1005455. doi: 10.1371/journal.pgen.1005455.
doi: 10.1371/journal.pgen.1005455 URL pmid: 26305227 |
[9] |
Chen B, Xu P, Wang J, et al. The role of MiRNA in polycystic ovary syndrome (PCOS)[J]. Gene, 2019,706:91-96. doi: 10.1016/j.gene.2019.04.082.
doi: 10.1016/j.gene.2019.04.082 URL pmid: 31054362 |
[10] |
McAllister JM, Han AX, Modi BP, et al. miRNA Profiling Reveals miRNA-130b-3p Mediates DENND1A Variant 2 Expression and Androgen Biosynjournal[J]. Endocrinology, 2019,160(8):1964-1981. doi: 10.1210/en.2019-00013.
doi: 10.1210/en.2019-00013 URL pmid: 31184707 |
[11] |
Mao Z, Fan L, Yu Q, et al. Abnormality of Klotho Signaling Is Involved in Polycystic Ovary Syndrome[J]. Reprod Sci, 2018,25(3):372-383. doi: 10.1177/1933719117715129.
doi: 10.1177/1933719117715129 URL pmid: 28673204 |
[12] |
Wang M, Sun J, Xu B, et al. Functional Characterization of MicroRNA-27a-3p Expression in Human Polycystic Ovary Syndrome[J]. Endocrinology, 2018,159(1):297-309. doi: 10.1210/en.2017-00219.
doi: 10.1210/en.2017-00219 URL pmid: 29029022 |
[13] |
Feng R, Sang Q, Kuang Y, et al. Mutations in TUBB8 and Human Oocyte Meiotic Arrest[J]. N Engl J Med, 2016,374(3):223-232. doi: 10.1056/NEJMoa1510791.
doi: 10.1056/NEJMoa1510791 URL pmid: 26789871 |
[14] |
Chen B, Zhang Z, Sun X, et al. Biallelic Mutations in PATL2 Cause Female Infertility Characterized by Oocyte Maturation Arrest[J]. Am J Hum Genet, 2017,101(4):609-615. doi: 10.1016/j.ajhg.2017.08.018.
doi: 10.1016/j.ajhg.2017.08.018 URL pmid: 28965849 |
[15] |
Xu Y, Shi Y, Fu J, et al. Mutations in PADI6 Cause Female Infertility Characterized by Early Embryonic Arrest[J]. Am J Hum Genet, 2016,99(3):744-752. doi: 10.1016/j.ajhg.2016.06.024.
doi: 10.1016/j.ajhg.2016.06.024 URL pmid: 27545678 |
[16] |
Sang Q, Li B, Kuang Y, et al. Homozygous Mutations in WEE2 Cause Fertilization Failure and Female Infertility[J]. Am J Hum Genet, 2018,102(4):649-657. doi: 10.1016/j.ajhg.2018.02.015.
doi: 10.1016/j.ajhg.2018.02.015 URL pmid: 29606300 |
[17] | Sang Q, Zhang Z, Shi J, et al. A pannexin 1 channelopathy causes human oocyte death[J]. Sci Transl Med, 2019,11(485):eaav8731. doi: 10.1126/scitranslmed.aav8731. |
[18] |
Xu Q, Xiang Y, Wang Q, et al. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development[J]. Nat Genet, 2019,51(5):844-856. doi: 10.1038/s41588-019-0398-7.
doi: 10.1038/s41588-019-0398-7 URL pmid: 31040401 |
[19] |
Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment[J]. Lancet Diabetes Endocrinol, 2017,5(7):544-553. doi: 10.1016/S2213-8587(16)30040-7.
doi: 10.1016/S2213-8587(16)30040-7 URL pmid: 27395771 |
[20] |
Ferlin A, Dipresa S, Delbarba A, et al. Contemporary genetics-based diagnostics of male infertility[J]. Expert Rev Mol Diagn, 2019,19(7):623-633. doi: 10.1080/14737159.2019.1633917.
doi: 10.1080/14737159.2019.1633917 URL pmid: 31215260 |
[21] |
Barceló M, Mata A, Bassas L, et al. Exosomal microRNAs in seminal plasma are markers of the origin of azoospermia and can predict the presence of sperm in testicular tissue[J]. Hum Reprod, 2018,33(6):1087-1098. doi: 10.1093/humrep/dey072.
doi: 10.1093/humrep/dey072 URL pmid: 29635626 |
[22] |
Bieniek JM, Drabovich AP, Lo KC. Seminal biomarkers for the evaluation of male infertility[J]. Asian J Androl, 2016,18(3):426-433. doi: 10.4103/1008-682X.175781.
doi: 10.4103/1008-682X.175781 URL pmid: 26975492 |
[23] |
Samanta L, Agarwal A, Swain N, et al. Proteomic Signatures of Sperm Mitochondria in Varicocele: Clinical Use as Biomarkers of Varicocele Associated Infertility[J]. J Urol, 2018,200(2):414-422. doi: 10.1016/j.juro.2018.03.009.
doi: 10.1016/j.juro.2018.03.009 URL pmid: 29530785 |
[24] |
Treff NR, Zimmerman RS. Advances in Preimplantation Genetic Testing for Monogenic Disease and Aneuploidy[J]. Annu Rev Genomics Hum Genet, 2017,18:189-200. doi: 10.1146/annurev-genom-091416-035508.
doi: 10.1146/annurev-genom-091416-035508 URL pmid: 28498723 |
[25] |
Zong C, Lu S, Chapman AR, et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 2012,338(6114):1622-1626. doi: 10.1126/science.1229164.
doi: 10.1126/science.1229164 URL pmid: 23258894 |
[26] |
Li W, Ma Y, Yu S, et al. The mutation-free embryo for in vitro fertilization selected by MALBAC-PGD resulted in a healthy live birth from a family carrying PKD 1 mutation[J]. J Assist Reprod Genet, 2017,34(12):1653-1658. doi: 10.1007/s10815-017-1018-z.
doi: 10.1007/s10815-017-1018-z URL pmid: 28825164 |
[27] |
Yan L, Huang L, Xu L, et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses[J]. Proc Natl Acad Sci U S A, 2015,112(52):15964-15969. doi: 10.1073/pnas.1523297113.
doi: 10.1073/pnas.1523297113 URL pmid: 26712022 |
[28] |
Miao H, Zhou J, Yang Q, et al. Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis[J]. Hereditas, 2018,155:32. doi: 10.1186/s41065-018-0069-1.
doi: 10.1186/s41065-018-0069-1 URL pmid: 30279644 |
[29] |
Guo H, Zhu P, Yan L, et al. The DNA methylation landscape of human early embryos[J]. Nature, 2014,511(7511):606-610. doi: 10.1038/nature13544.
doi: 10.1038/nature13544 URL |
[30] |
Zhu P, Guo H, Ren Y, et al. Single-cell DNA methylome sequencing of human preimplantation embryos[J]. Nat Genet, 2018,50(1):12-19. doi: 10.1038/s41588-017-0007-6.
doi: 10.1038/s41588-017-0007-6 URL pmid: 29255258 |
[31] |
Xue Z, Huang K, Cai C, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing[J]. Nature, 2013,500(7464):593-597. doi: 10.1038/nature12364.
doi: 10.1038/nature12364 URL pmid: 23892778 |
[32] |
Yu HT, Yang Q, Sun XX, et al. Association of birth defects with the mode of assisted reproductive technology in a Chinese data-linkage cohort[J]. Fertil Steril, 2018,109(5):849-856. doi: 10.1016/j.fertnstert.2018.01.012.
doi: 10.1016/j.fertnstert.2018.01.012 URL pmid: 29778384 |
[33] |
Acharya KS, Acharya CR, Bishop K, et al. Freezing of all embryos in in vitro fertilization is beneficial in high responders, but not intermediate and low responders: an analysis of 82,935 cycles from the Society for Assisted Reproductive Technology registry[J]. Fertil Steril, 2018,110(5):880-887. doi: 10.1016/j.fertnstert.2018.05.024.
doi: 10.1016/j.fertnstert.2018.05.024 URL pmid: 30139718 |
[34] |
Storr A, Venetis CA, Cooke S, et al. Inter-observer and intra-observer agreement between embryologists during selection of a single Day 5 embryo for transfer: a multicenter study[J]. Hum Reprod, 2017,32(2):307-314. doi: 10.1093/humrep/dew330.
doi: 10.1093/humrep/dew330 URL pmid: 28031323 |
[35] |
Simopoulou M, Sfakianoudis K, Maziotis E, et al. Are computational applications the "crystal ball" in the IVF laboratory? The evolution from mathematics to artificial intelligence[J]. J Assist Reprod Genet, 2018,35(9):1545-1557. doi: 10.1007/s10815-018-1266-6.
doi: 10.1007/s10815-018-1266-6 URL pmid: 30054845 |
[36] |
Saeedi P, Yee D, Au J, et al. Automatic Identification of Human Blastocyst Components via Texture[J]. IEEE Trans Biomed Eng, 2017,64(12):2968-2978. doi: 10.1109/TBME.2017.2759665.
doi: 10.1109/TBME.2017.2759665 URL pmid: 28991729 |
[37] |
Tran D, Cooke S, Illingworth PJ, et al. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer[J]. Hum Reprod, 2019,34(6):1011-1018. doi: 10.1093/humrep/dez064.
doi: 10.1093/humrep/dez064 URL pmid: 31111884 |
[38] |
Khosravi P, Kazemi E, Zhan Q, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization[J]. NPJ Digit Med, 2019,2:21. doi: 10.1038/s41746-019-0096-y.
doi: 10.1038/s41746-019-0096-y URL pmid: 31304368 |
[1] | 白若妍, 王炎强, 陈京霞. 绝经后女性宫内节育器相关卵巢脓肿术后继发脑脓肿一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 485-489. |
[2] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[3] | 刘芙蓉, 王兴, 李燕婷, 张钏, 郭媛媛, 惠玲, 郝胜菊. 甘肃地区新生儿遗传代谢病疾病谱与基因变异分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 378-383. |
[4] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[5] | 刘芙蓉, 张钏, 周秉博, 陈雪, 田芯瑗, 马盼盼, 惠玲, 郝胜菊. 甘肃地区育龄夫妇基因扩展性携带者筛查研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 293-297. |
[6] | 陈擎, 张迪, 杨小婷, 罗惠文, 苏华斌. 健康和疾病的发育起源理论研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 317-321. |
[7] | 李苗苗, 江洪, 蔡朋达. 胚胎停育的影响因素分析及预测研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 332-337. |
[8] | 张爱玉, 栾翠玉, 王冬梅, 蒋帅. IVF-ET不孕症患者就医延迟现状及影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 190-194. |
[9] | 姜乐然, 张园, 王琳, 刁飞扬. 人类子宫内膜的单细胞组学研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 216-221. |
[10] | 贺晴雯, 李喜红. 辅助生殖技术助孕患者的睡眠障碍及非药物干预的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 234-237. |
[11] | 高朝阳, 章宁晴, 陈琼华, 吴荣锋. 环状RNA在子宫内膜异位症不孕患者卵泡颗粒细胞中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 243-248. |
[12] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
[13] | 郝佳丽, 何玉洁. 不孕不育人群生育生活质量评价及其影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 159-165. |
[14] | 闻星星, 柴梦晗, 杨倪, 邹慧娟, 章志国, 李琳, 陈蓓丽. TUBB8基因c.154-156del杂合变异致卵母细胞成熟阻滞一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 17-19. |
[15] | 罗丽燕, 金叶, 史莉, 韩梅, 于然, 宋东红. 多囊卵巢综合征合并不孕患者病耻感现状及影响因素研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 6-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||