[1] |
Njagi P, Groot W, Arsenijevic J, et al. Financial costs of assisted reproductive technology for patients in low- and middle-income countries: a systematic review[J]. Hum Reprod Open, 2023, 2023(2):hoad007. doi: 10.1093/hropen/hoad007.
|
[2] |
全紫薇, 刘晓曦. 健康中国背景下我国辅助生殖技术的发展与进步[J]. 医学研究杂志, 2022, 51(10):6-8. doi: 10.11969/j.issn.1673-548X.2022.10.002.
|
[3] |
梁明明, 秦祖兴, 张明, 等. 人类卵母细胞冷冻技术研究现状[J]. 中文科技期刊数据库(引文版)医药卫生, 2022,(7):43-48.
|
[4] |
Barroso P, Nascimento DR, Lima Neto MF, et al. Therapeutic potential of nanotechnology in reproduction disorders and possible limitations[J]. Zygote, 2023, 31(5):433-440. doi: 10.1017/S0967199423000424.
|
[5] |
Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo[J]. Front Toxicol, 2022,4:895667. doi: 10.3389/ftox.2022.895667.
|
[6] |
El-Naby A, Ibrahim S, Hozyen HF, et al. Impact of nano-selenium on nuclear maturation and genes expression profile of buffalo oocytes matured in vitro[J]. Mol Biol Rep, 2020, 47(11):8593-8603. doi: 10.1007/s11033-020-05902-9.
|
[7] |
Roy PK, Qamar AY, Fang X, et al. Chitosan nanoparticles enhance developmental competence of in vitro-matured porcine oocytes[J]. Reprod Domest Anim, 2021, 56(2):342-350. doi: 10.1111/rda.13871.
pmid: 33247973
|
[8] |
Xu MT, Zhang M, Wang GL, et al. Postovulatory Aging of Mouse Oocytes Impairs Offspring Behavior by Causing Oxidative Stress and Damaging Mitochondria[J]. Cells, 2024, 13(9):758. doi: 10.3390/cells13090758.
|
[9] |
Wang Y, Zhong C, Ma X, et al. Ceria Nanoparticles Improve the Quality of Aging Oocytes in Mice by Enhancing ROS Scavenging Ability[J]. ACS Appl Bio Mater, 2025, 8(2):992-1001. doi: 10.1021/acsabm.4c01086.
pmid: 39957429
|
[10] |
Zhang D, Ji L, Yang Y, et al. Ceria Nanoparticle Systems Alleviate Degenerative Changes in Mouse Postovulatory Aging Oocytes by Reducing Oxidative Stress and Improving Mitochondrial Functions[J]. ACS Nano, 2024, 18(21):13618-13634. doi: 10.1021/acsnano.4c00383.
pmid: 38739841
|
[11] |
Zhang Z, Mu Y, Ding D, et al. Melatonin improves the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma[J]. J Pineal Res, 2021, 70(2):e12707. doi: 10.1111/jpi.12707.
|
[12] |
Xi H, Huang L, Qiu L, et al. Enhancing oocyte in vitro maturation and quality by melatonin/bilirubin cationic nanoparticles: A promising strategy for assisted reproduction techniques[J]. Int J Pharm X, 2024,8:100268. doi: 10.1016/j.ijpx.2024.100268.
|
[13] |
Lee S, Kim HJ, Cho HB, et al. Melatonin loaded PLGA nanoparticles effectively ameliorate the in vitro maturation of deteriorated oocytes and the cryoprotective abilities during vitrification process[J]. Biomater Sci, 2023, 11(8):2912-2923. doi: 10.1039/d2bm02054h.
|
[14] |
Chang CC, Shapiro DB, Nagy ZP. The effects of vitrification on oocyte quality[J]. Biol Reprod, 2022, 106(2):316-327. doi: 10.1093/biolre/ioab239.
|
[15] |
王晓静, 赵世玉, 刘毅恒, 等. 添加HA纳米颗粒对牛GV期卵母细胞玻璃化冷冻后发育能力的影响[J]. 黑龙江动物繁殖, 2023, 31(1):7-13. doi: 10.19848/j.cnki.ISSN1005-2739.2022.11.0005.
|
[16] |
Liu Q, Liu A, Liu Y, et al. Hydroxyapatite nanoparticle improves ovine oocyte developmental capacity by alleviating oxidative stress in response to vitrification stimuli[J]. Theriogenology, 2024, 229:88-99. doi: 10.1016/j.theriogenology.2024.08.016.
pmid: 39167837
|
[17] |
Baniasadi F, Hajiaghalou S, Shahverdi A, et al. The Beneficial Effects of Static Magnetic Field and Iron Oxide Nanoparticles on the Vitrification of Mature Mice Oocytes[J]. Reprod Sci, 2023, 30(7):2122-2136. doi: 10.1007/s43032-022-01144-1.
|
[18] |
Abbasi Y, Hajiaghalou S, Baniasadi F, et al. Fe3O4 magnetic nanoparticles improve the vitrification of mouse immature oocytes and modulate the pluripotent genes expression in derived pronuclear-stage embryos[J]. Cryobiology, 2021, 100:81-89. doi: 10.1016/j.cryobiol.2021.03.006.
|
[19] |
Li C, Wang Z, Lei H, et al. Recent progress in nanotechnology-based drug carriers for resveratrol delivery[J]. Drug Deliv, 2023, 30(1):2174206. doi: 10.1080/10717544.2023.2174206.
|
[20] |
Hai G, Bai J, Liu Y, et al. Superior performance of biocomposite nanoparticles PLGA-RES in protecting oocytes against vitrification stimuli[J]. Front Bioeng Biotechnol, 2024,12:1376205. doi: 10.3389/fbioe.2024.1376205.
|
[21] |
Zhou J, Li XY, Liu YJ, et al. Full-coverage regulations of autophagy by ROS: from induction to maturation[J]. Autophagy, 2022, 18(6):1240-1255. doi: 10.1080/15548627.2021.1984656.
|
[22] |
Huang C, Wu D, Khan FA, et al. Zinc oxide nanoparticle causes toxicity to the development of mouse oocyte and early embryo[J]. Toxicol Lett, 2022, 358:48-58. doi: 10.1016/j.toxlet.2022.01.010.
pmid: 35074469
|
[23] |
Zhang M, Wang W, Zhang D, et al. Copper oxide nanoparticles impairs oocyte meiosis maturation by inducing mitochondrial dysfunction and oxidative stress[J]. Food Chem Toxicol, 2024,185:114441. doi: 10.1016/j.fct.2024.114441.
|
[24] |
Cox BJ, Naismith K. Here and there a trophoblast, a transcriptional evaluation of trophoblast cell models[J]. Cell Mol Life Sci, 2022, 79(12):584. doi: 10.1007/s00018-022-04589-4.
pmid: 36346530
|
[25] |
Su Z, Yao C, Tipper J, et al. Nanostrategy of Targeting at Embryonic Trophoblast Cells Using CuO Nanoparticles for Female Contraception[J]. ACS Nano, 2023, 17(24):25185-25204. doi: 10.1021/acsnano.3c08267.
pmid: 38088330
|
[26] |
Wan S, Wang X, Chen W, et al. Polystyrene Nanoplastics Activate Autophagy and Suppress Trophoblast Cell Migration/Invasion and Migrasome Formation to Induce Miscarriage[J]. ACS Nano, 2024, 18(4):3733-3751. doi: 10.1021/acsnano.3c11734.
pmid: 38252510
|
[27] |
Luo Y, Zeng X, Dai X, et al. Copper Oxide Nanoparticles Impair Mouse Preimplantation Embryonic Development through Disruption of Mitophagy-Mediated Metabolism[J]. ACS Nano, 2024, 18(45):31244-31260. doi: 10.1021/acsnano.4c09734.
pmid: 39487804
|
[28] |
Liu X, Li J, Zhu L, et al. Mechanistic insights into zinc oxide nanoparticles induced embryotoxicity via H3K9me3 modulation[J]. Biomaterials, 2024, 311:122679. doi: 10.1016/j.biomaterials.2024.122679.
|