国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (5): 402-406.doi: 10.12280/gjszjk.20210042
收稿日期:
2021-01-23
出版日期:
2021-09-15
发布日期:
2021-09-29
通讯作者:
夏天
E-mail:xiatian76@163.com
基金资助:
JIANG Nan, MA Rui-hong, ZHAO Xiao-li, XIA Tian()
Received:
2021-01-23
Published:
2021-09-15
Online:
2021-09-29
Contact:
XIA Tian
E-mail:xiatian76@163.com
摘要:
活性氧(reactive oxygen species,ROS)是氧与电子反应后的产物,适当的ROS水平和氧化应激平衡对维持生理功能有着重要作用。当ROS产生过多或消除ROS的能力减弱,产生氧化应激(oxidative stress,OS),可导致多种不孕相关疾病。氧化应激参与了多囊卵巢综合征、子宫内膜异位症、复发性流产等多种疾病的发生发展,同时参与疾病的转归。除了参与女性生殖相关疾病,氧化应激也可以降低精液的质量,影响男性的生殖功能。因此就氧化应激在生殖系统相关疾病的发病机制中所发挥的作用进行综述。
江楠, 马瑞红, 赵晓丽, 夏天. 氧化应激与生殖相关疾病研究进展[J]. 国际生殖健康/计划生育, 2021, 40(5): 402-406.
JIANG Nan, MA Rui-hong, ZHAO Xiao-li, XIA Tian. Research Progress on Oxidative Stress and Reproductive Related Diseases[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(5): 402-406.
[1] |
Papalou O, Victor VM, Diamanti-Kandarakis E. Oxidative Stress in Polycystic Ovary Syndrome[J]. Curr Pharm Des, 2016, 22(18):2709-2722. doi: 10.2174/1381612822666160216151852.
doi: 10.2174/1381612822666160216151852 URL |
[2] | Moti M, Amini L, Mirhoseini Ardakani SS, et al. Oxidative stress and anti-oxidant defense system in Iranian women with polycystic ovary syndrome[J]. Iran J Reprod Med, 2015, 13(6):373-378. |
[3] |
Uyanikoglu H, Sabuncu T, Dursun H, et al. Circulating levels of apoptotic markers and oxidative stress parameters in women with polycystic ovary syndrome: a case-controlled descriptive study[J]. Biomarkers, 2017, 22(7):643-647. doi: 10.1080/1354750X.2016.1265004.
doi: 10.1080/1354750X.2016.1265004 pmid: 27899026 |
[4] |
Deepika ML, Nalini S, Maruthi G, et al. Analysis of oxidative stress status through MN test and serum MDA levels in PCOS women[J]. Pak J Biol Sci, 2014, 17(4):574-577. doi: 10.3923/pjbs.2014.574.577.
doi: 10.3923/pjbs.2014.574.577 URL |
[5] |
Maciejczyk M, Zebrowska E, Chabowski A. Insulin Resistance and Oxidative Stress in the Brain: What′s New?[J]. Int J Mol Sci, 2019, 20(4):874. doi: 10.3390/ijms20040874.
doi: 10.3390/ijms20040874 URL |
[6] |
Achari AE, Jain SK. l-Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes[J]. Arch Biochem Biophys, 2017, 630:54-65. doi: 10.1016/j.abb.2017.07.016.
doi: 10.1016/j.abb.2017.07.016 URL |
[7] |
El-Hafidi M, Franco M, Ramírez AR, et al. Glycine Increases Insulin Sensitivity and Glutathione Biosynjournal and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance[J]. Oxid Med Cell Longev, 2018, 2018:2101562. doi: 10.1155/2018/2101562.
doi: 10.1155/2018/2101562 pmid: 29675131 |
[8] |
González F, Rote NS, Minium J, et al. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome[J]. J Clin Endocrinol Metab, 2006, 91(1):336-340. doi: 10.1210/jc.2005-1696.
doi: 10.1210/jc.2005-1696 URL |
[9] |
González F, Nair KS, Daniels JK, et al. Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote oxidative stress in lean reproductive-age women[J]. J Clin Endocrinol Metab, 2012, 97(8):2836-2843. doi: 10.1210/jc.2012-1259.
doi: 10.1210/jc.2012-1259 pmid: 22569241 |
[10] |
Van Langendonckt A, Casanas-Roux F, Donnez J. Oxidative stress and peritoneal endometriosis[J]. Fertil Steril, 2002, 77(5):861-870. doi: 10.1016/s0015-0282(02)02959-x.
doi: 10.1016/s0015-0282(02)02959-x pmid: 12009336 |
[11] |
Da Broi MG, Navarro PA. Oxidative stress and oocyte quality: ethiopathogenic mechanisms of minimal/mild endometriosis-related infertility[J]. Cell Tissue Res, 2016, 364(1):1-7. doi: 10.1007/s00441-015-2339-9.
doi: 10.1007/s00441-015-2339-9 URL |
[12] |
Chen C, Zhou Y, Hu C, et al. Mitochondria and oxidative stress in ovarian endometriosis[J]. Free Radic Biol Med, 2019, 136:22-34. doi: 10.1016/j.freeradbiomed.2019.03.027.
doi: 10.1016/j.freeradbiomed.2019.03.027 URL |
[13] |
Samimi M, Pourhanifeh MH, Mehdizadehkashi A, et al. The role of inflammation, oxidative stress, angiogenesis, and apoptosis in the pathophysiology of endometriosis: Basic science and new insights based on gene expression[J]. J Cell Physiol, 2019, 234(11):19384-19392. doi: 10.1002/jcp.28666.
doi: 10.1002/jcp.28666 URL |
[14] | Xie H, Chen P, Huang HW, et al. Reactive oxygen species downregulate ARID1A expression via its promoter methylation during the pathogenesis of endometriosis[J]. Eur Rev Med Pharmacol Sci, 2017, 21(20):4509-4515. |
[15] |
Yachida N, Yoshihara K, Suda K, et al. ARID1A protein expression is retained in ovarian endometriosis with ARID1A loss-of-function mutations: implication for the two-hit hypojournal[J]. Sci Rep, 2020, 10(1):14260. doi: 10.1038/s41598-020-71273-7.
doi: 10.1038/s41598-020-71273-7 pmid: 32868822 |
[16] |
Yang HL, Zhou WJ, Gu CJ, et al. Pleiotropic roles of melatonin in endometriosis, recurrent spontaneous abortion, and polycystic ovary syndrome[J]. Am J Reprod Immunol, 2018, 80(1):e12839. doi: 10.1111/aji.12839.
doi: 10.1111/aji.12839 URL |
[17] |
Arias-Sosa LA, Acosta ID, Lucena-Quevedo E, et al. Genetic and epigenetic variations associated with idiopathic recurrent pregnancy loss[J]. J Assist Reprod Genet, 2018, 35(3):355-366. doi: 10.1007/s10815-017-1108-y.
doi: 10.1007/s10815-017-1108-y URL |
[18] |
Liang F, Huo X, Wang W, et al. Association of bisphenol A or bisphenol S exposure with oxidative stress and immune disturbance among unexplained recurrent spontaneous abortion women[J]. Chemosphere, 2020, 257:127035. doi: 10.1016/j.chemosphere.2020.127035.
doi: S0045-6535(20)31228-5 pmid: 32702804 |
[19] |
Azizi R, Soltani-Zangbar MS, Sheikhansari G, et al. Metabolic syndrome mediates inflammatory and oxidative stress responses in patients with recurrent pregnancy loss[J]. J Reprod Immunol, 2019, 133:18-26. doi: 10.1016/j.jri.2019.05.001.
doi: 10.1016/j.jri.2019.05.001 URL |
[20] |
Luo Z, Luo W, Li S, et al. Reactive oxygen species mediated placental oxidative stress, mitochondrial content, and cell cycle progression through mitogen-activated protein kinases in intrauterine growth restricted pigs[J]. Reprod Biol, 2018, 18(4):422-431. doi: 10.1016/j.repbio.2018.09.002.
doi: 10.1016/j.repbio.2018.09.002 URL |
[21] |
Witczak M, Wilczyński J, Gulczyńska E, et al. What is the impact of gestational diabetes mellitus on frequency of structural chromosome aberrations in pregnant women and their offspring?[J]. Mutat Res, 2017, 818:27-30. doi: 10.1016/j.mrgentox.2017.04.003.
doi: 10.1016/j.mrgentox.2017.04.003 |
[22] |
Luo Z, Xu X, Sho T, et al. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation[J]. Am J Physiol Cell Physiol, 2019, 316(2):C198-C209. doi: 10.1152/ajpcell.00256.2018.
doi: 10.1152/ajpcell.00256.2018 URL |
[23] |
Fortis MF, Fraga LR, Boquett JA, et al. Angiogenesis and oxidative stress-related gene variants in recurrent pregnancy loss[J]. Reprod Fertil Dev, 2018, 30(3):498-506. doi: 10.1071/RD17117.
doi: 10.1071/RD17117 URL |
[24] |
Camps J, Iftimie S, García-Heredia A, et al. Paraoxonases and infectious diseases[J]. Clin Biochem, 2017, 50(13/14):804-811. doi: 10.1016/j.clinbiochem.2017.04.016.
doi: 10.1016/j.clinbiochem.2017.04.016 URL |
[25] |
Dikbas L, Dur R, Tas IH, et al. Low transcriptional activity of PON2 in recurrent abortion: A novel therapeutic agent?[J]. J Gynecol Obstet Hum Reprod, 2018, 47(8):379-383. doi: 10.1016/j.jogoh.2018.06.006.
doi: 10.1016/j.jogoh.2018.06.006 URL |
[26] |
Bisht S, Faiq M, Tolahunase M, et al. Oxidative stress and male infertility[J]. Nat Rev Urol, 2017, 14(8):470-485. doi: 10.1038/nrurol.2017.69.
doi: 10.1038/nrurol.2017.69 URL |
[27] |
Zhu Z, Kawai T, Umehara T, et al. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria[J]. Free Radic Biol Med, 2019, 141:159-171. doi: 10.1016/j.freeradbiomed.2019.06.018.
doi: 10.1016/j.freeradbiomed.2019.06.018 URL |
[28] |
Darbandi M, Darbandi S, Agarwal A, et al. Reactive oxygen species and male reproductive hormones[J]. Reprod Biol Endocrinol, 2018, 16(1):87. doi: 10.1186/s12958-018-0406-2.
doi: 10.1186/s12958-018-0406-2 URL |
[29] |
Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management[J]. Cell Mol Life Sci, 2020, 77(1):93-113. doi: 10.1007/s00018-019-03253-8.
doi: 10.1007/s00018-019-03253-8 URL |
[30] |
Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage[J]. Mol Reprod Dev, 2017, 84(10):1039-1052. doi: 10.1002/mrd.22871.
doi: 10.1002/mrd.22871 URL |
[31] |
Li CY, Zhao YH, Hao HS, et al. Resveratrol significantly improves the fertilisation capacity of bovine sex-sorted semen by inhibiting apoptosis and lipid peroxidation[J]. Sci Rep, 2018, 8(1):7603. doi: 10.1038/s41598-018-25687-z.
doi: 10.1038/s41598-018-25687-z URL |
[32] |
Gautam S, Tolahunase M, Biswas VK, et al. Impact of meditation and yoga on oxidative DNA damage in sperm: clinical implications[J]. J Yoga Phys Ther, 2016, 6(3):250. doi: 10.4172/2157-7595.1000250.
doi: 10.4172/2157-7595.1000250 |
[33] |
Simon L, Murphy K, Shamsi MB, et al. Paternal influence of sperm DNA integrity on early embryonic development[J]. Hum Reprod, 2014, 29(11):2402-2412. doi: 10.1093/humrep/deu228.
doi: 10.1093/humrep/deu228 URL |
[34] |
Yuan M, Huang L, Leung WT, et al. Sperm DNA fragmentation valued by SCSA and its correlation with conventional sperm parameters in male partner of recurrent spontaneous abortion couple[J]. Biosci Trends, 2019, 13(2):152-159. doi: 10.5582/bst.2018.01292.
doi: 10.5582/bst.2018.01292 |
[35] |
Esquerré-Lamare C, Walschaerts M, Chansel Debordeaux L, et al. Sperm aneuploidy and DNA fragmentation in unexplained recurrent pregnancy loss: a multicenter case-control study[J]. Basic Clin Androl, 2018, 28:4. doi: 10.1186/s12610-018-0070-6.
doi: 10.1186/s12610-018-0070-6 pmid: 29619224 |
[36] |
Ihsan AU, Khan FU, Khongorzul P, et al. Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress[J]. Biomed Pharmacother, 2018, 106:714-723. doi: 10.1016/j.biopha.2018.06.139.
doi: 10.1016/j.biopha.2018.06.139 URL |
[37] |
Belardin LB, Antoniassi MP, Camargo M, et al. Semen levels of matrix metalloproteinase (MMP) and tissue inhibitor of metallorproteinases (TIMP) protein families members in men with high and low sperm DNA fragmentation[J]. Sci Rep, 2019, 9(1):903. doi: 10.1038/s41598-018-37122-4.
doi: 10.1038/s41598-018-37122-4 URL |
[1] | 苗贺瑱, 刘佳佳, 闫宇, 马国霞, 王晓慧. 一例罕见的宫颈子宫内膜异位症[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 475-478. |
[2] | 李安琪, 朱梦一, 王宇, 高敬书, 吴效科. 丹参酮在多囊卵巢综合征治疗中的潜在价值及其机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 494-500. |
[3] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[4] | 乔新月, 陶爱琳, 冯晓玲, 陈璐. 多囊卵巢综合征伴焦虑、抑郁障碍的相关性研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 506-511. |
[5] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[6] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[7] | 高征, 李梦元, 李博, 梁婧翘, 张雅冬, 许昕. 中药复方干预肥胖型多囊卵巢综合征糖脂代谢异常的Meta分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 368-377. |
[8] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[9] | 江楠, 赵晓丽, 栾祖乾, 黄志云, 夏天. 高龄女性卵母细胞内氧化应激与非整倍体相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 415-419. |
[10] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[11] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[12] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[13] | 石百超, 常惠, 王宇, 卢凤娟, 王凯悦, 关木馨, 马良, 吴效科. 肠道菌群在多囊卵巢综合征中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 238-242. |
[14] | 高朝阳, 章宁晴, 陈琼华, 吴荣锋. 环状RNA在子宫内膜异位症不孕患者卵泡颗粒细胞中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 243-248. |
[15] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||