Journal of International Reproductive Health/Family Planning ›› 2021, Vol. 40 ›› Issue (3): 260-264.doi: 10.12280/gjszjk.20200457
• Review • Previous Articles
QIAO Guo-dong, WANG Yong-hong△()
Received:
2020-07-30
Published:
2021-05-15
Online:
2021-05-28
Contact:
WANG Yong-hong
E-mail:wangyh19672000@126.com
QIAO Guo-dong, WANG Yong-hong. Neutrophil Extracellular Traps and Related Reproductive Diseases[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(3): 260-264.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Brinkmann V. Neutrophil Extracellular Traps in the Second Decade[J]. J Innate Immun, 2018,10(5/6):414-421. doi: 10.1159/000489829.
doi: 10.1159/000489829 URL |
[2] |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004,303(5663):1532-1535. doi: 10.1126/science.1092385.
doi: 10.1126/science.1092385 URL |
[3] |
Estúa-Acosta GA, Zamora-Ortiz R, Buentello-Volante B, et al. Neutrophil Extracellular Traps: Current Perspectives in the Eye[J]. Cells, 2019,8(9):979. doi: 10.3390/cells8090979.
doi: 10.3390/cells8090979 URL |
[4] |
Yousefi S, Simon D, Stojkov D, et al. In vivo evidence for extracellular DNA trap formation[J]. Cell Death Dis, 2020,11(4):300. doi: 10.1038/s41419-020-2497-x.
doi: 10.1038/s41419-020-2497-x URL pmid: 32355207 |
[5] |
Stojkov D, Amini P, Oberson K, et al. ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation[J]. J Cell Biol, 2017,216(12):4073-4090. doi: 10.1083/jcb.201611168.
doi: 10.1083/jcb.201611168 URL |
[6] |
Brinkmann V. Neutrophil Extracellular Traps in the Second Decade[J]. J Innate Immun, 2018,10(5/6):414-421. doi: 10.1159/000489829.
doi: 10.1159/000489829 URL |
[7] |
Tatsiy O, McDonald PP. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways[J]. Front Immunol, 2018,9:2036. doi: 10.3389/fimmu.2018.02036.
doi: 10.3389/fimmu.2018.02036 URL pmid: 30279690 |
[8] |
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, et al. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview[J]. Front Immunol, 2017,8:81. doi: 10.3389/fimmu.2017.00081.
doi: 10.3389/fimmu.2017.00081 URL pmid: 28220120 |
[9] |
de Bont CM, Koopman W, Boelens WC, et al. Stimulus-dependent chromatin dynamics, citrullination, calcium signalling and ROS production during NET formation[J]. Biochim Biophys Acta Mol Cell Res, 2018,1865(11 Pt A):1621-1629. doi: 10.1016/j.bbamcr.2018.08.014.
doi: 10.1016/j.bbamcr.2018.08.014 URL |
[10] |
Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps[J]. J Cell Biol, 2007,176(2):231-241. doi: 10.1083/jcb.200606027.
doi: 10.1083/jcb.200606027 URL |
[11] |
Nadesalingam A, Chen J, Farahvash A, et al. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis[J]. Front Immunol, 2018,9:359. doi: 10.3389/fimmu.2018.00359.
doi: 10.3389/fimmu.2018.00359 URL pmid: 29593709 |
[12] |
Wang L, Zhou X, Yin Y, et al. Hyperglycemia Induces Neutrophil Extracellular Traps Formation Through an NADPH Oxidase-Dependent Pathway in Diabetic Retinopathy[J]. Front Immunol, 2018,9:3076. doi: 10.3389/fimmu.2018.03076.
doi: 10.3389/fimmu.2018.03076 URL |
[13] |
Zabieglo K, Majewski P, Majchrzak-Gorecka M, et al. The inhibitory effect of secretory leukocyte protease inhibitor (SLPI) on formation of neutrophil extracellular traps[J]. J Leukoc Biol, 2015,98(1):99-106. doi: 10.1189/jlb.4AB1114-543R.
doi: 10.1189/jlb.4AB1114-543R URL |
[14] |
Björnsdottir H, Welin A, Michaëlsson E, et al. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species[J]. Free Radic Biol Med, 2015,89:1024-1035. doi: 10.1016/j.freeradbiomed.2015.10.398.
doi: 10.1016/j.freeradbiomed.2015.10.398 URL |
[15] | Odobasic D, Kitching AR, Holdsworth SR. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase[J]. J Immunol Res, 2016,2016:2349817. doi: 10.1155/2016/2349817. |
[16] | Wong SL, Wagner DD . Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging[J]. FASEB J, 2018, 32(12):fj201800691R. doi: 10.1096/fj.201800691R. |
[17] |
Gordon RA, Herter JM, Rosetti F, et al. Lupus and proliferative nephritis are PAD4 independent in murine models[J]. JCI Insight, 2017,2(10):e92926. doi: 10.1172/jci.insight.92926.
doi: 10.1172/jci.insight.92926 URL |
[18] |
Guiducci E, Lemberg C, Küng N, et al. Candida albicans-Induced NETosis Is Independent of Peptidylarginine Deiminase 4[J]. Front Immunol, 2018,9:1573. doi: 10.3389/fimmu.2018.01573.
doi: 10.3389/fimmu.2018.01573 URL pmid: 30038623 |
[19] |
Sharma A, Simonson TJ, Jondle CN, et al. Mincle-Mediated Neutrophil Extracellular Trap Formation by Regulation of Autophagy[J]. J Infect Dis, 2017,215(7):1040-1048. doi: 10.1093/infdis/jix072.
doi: 10.1093/infdis/jix072 URL pmid: 28186242 |
[20] |
Sil P, Wicklum H, Surell C, et al. Macrophage-derived IL-1β enhances monosodium urate crystal-triggered NET formation[J]. Inflamm Res, 2017,66(3):227-237. doi: 10.1007/s00011-016-1008-0.
doi: 10.1007/s00011-016-1008-0 URL |
[21] |
Itakura A, McCarty OJ. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy[J]. Am J Physiol Cell Physiol, 2013,305(3):C348-354. doi: 10.1152/ajpcell.00108.2013.
doi: 10.1152/ajpcell.00108.2013 URL |
[22] |
Xue Y, Du M, Sheng H, et al. Escherichia coli O157:H7 suppresses host autophagy and promotes epithelial adhesion via Tir-mediated and cAMP-independent activation of protein kinase A[J]. Cell Death Discov, 2017,3:17055. doi: 10.1038/cddiscovery.2017.55.
doi: 10.1038/cddiscovery.2017.55 URL |
[23] |
Ma R, Li T, Cao M, et al. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy[J]. Cell Death Dis, 2016,7(6):e2283. doi: 10.1038/cddis.2016.186.
doi: 10.1038/cddis.2016.186 URL |
[24] |
Xu F, Zhang C, Zou Z, et al. Aging-related Atg5 defect impairs neutrophil extracellular traps formation[J]. Immunology, 2017,151(4):417-432. doi: 10.1111/imm.12740.
doi: 10.1111/imm.2017.151.issue-4 URL |
[25] |
Teimourian S, Moghanloo E. Role of PTEN in neutrophil extracellular trap formation[J]. Mol Immunol, 2015,66(2):319-324. doi: 10.1016/j.molimm.2015.03.251.
doi: 10.1016/j.molimm.2015.03.251 URL |
[26] |
Fonseca Z, Díaz-Godínez C, Mora N, et al. Entamoeba histolytica Induce Signaling via Raf/MEK/ERK for Neutrophil Extracellular Trap (NET) Formation[J]. Front Cell Infect Microbiol, 2018,8:226. doi: 10.3389/fcimb.2018.00226.
doi: 10.3389/fcimb.2018.00226 URL |
[27] |
Grimberg-Peters D, Büren C, Windolf J, et al. Hyperbaric Oxygen Reduces Production of Reactive Oxygen Species in Neutrophils from Polytraumatized Patients Yielding in the Inhibition of p38 MAP Kinase and Downstream Pathways[J]. PLoS One, 2016,11(8):e0161343. doi: 10.1371/journal.pone.0161343.
doi: 10.1371/journal.pone.0161343 URL |
[28] | Alemán OR, Mora N, Cortes-Vieyra R, et al. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation[J]. Front Immunol, 2016,7:277. doi: 10.3389/fimmu.2016.00277. |
[29] |
Ma F, Chang X, Wang G, et al. Streptococcus Suis Serotype 2 Stimulates Neutrophil Extracellular Traps Formation via Activation of p38 MAPK and ERK1/2[J]. Front Immunol, 2018,9:2854. doi: 10.3389/fimmu.2018.02854.
doi: 10.3389/fimmu.2018.02854 URL |
[30] |
Nanì S, Fumagalli L, Sinha U, et al. Src family kinases and Syk are required for neutrophil extracellular trap formation in response to β-glucan particles[J]. J Innate Immun, 2015,7(1):59-73. doi: 10.1159/000365249.
doi: 10.1159/000365249 URL |
[31] |
Silva JC, Rodrigues NC, Thompson-Souza GA, et al. Mac-1 triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination[J]. J Leukoc Biol, 2020,107(1):69-83. doi: 10.1002/JLB.4A0119-009RR.
doi: 10.1002/jlb.v107.1 URL |
[32] |
Torene R, Nirmala N, Obici L, et al. Canakinumab reverses overexpression of inflammatory response genes in tumour necrosis factor receptor-associated periodic syndrome[J]. Ann Rheum Dis, 2017,76(1):303-309. doi: 10.1136/annrheumdis-2016-209335.
doi: 10.1136/annrheumdis-2016-209335 URL |
[33] |
Desai J, Foresto-Neto O, Honarpisheh M, et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin[J]. Sci Rep, 2017,7(1):15003. doi: 10.1038/s41598-017-15106-0.
doi: 10.1038/s41598-017-15106-0 URL |
[34] |
Gomez-Lopez N, Romero R, Xu Y, et al. Neutrophil Extracellular Traps in the Amniotic Cavity of Women with Intra-Amniotic Infection: A New Mechanism of Host Defense[J]. Reprod Sci, 2017,24(8):1139-1153. doi: 10.1177/1933719116678690.
doi: 10.1177/1933719116678690 URL pmid: 27884950 |
[35] |
Hu Y, Li H, Yan R, et al. Increased Neutrophil Activation and Plasma DNA Levels in Patients with Pre-Eclampsia[J]. Thromb Haemost, 2018,118(12):2064-2073. doi: 10.1055/s-0038-1675788.
doi: 10.1055/s-0038-1675788 URL |
[36] |
Barr FD, Ochsenbauer C, Wira CR, et al. Neutrophil extracellular traps prevent HIV infection in the female genital tract[J]. Mucosal Immunol, 2018,11(5):1420-1428. doi: 10.1038/s41385-018-0045-0.
doi: 10.1038/s41385-018-0045-0 URL |
[1] | GAO Xiao-li, SU Jing, LI Zeng-yan, LI Jie. Clinical Analysis of 14 Cases of Pregnancy-Associated Hemolytic Uremic Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 458-461. |
[2] | LIU Fang-lei, FENG Xiao-ling. The Correlation between Thyroid-Related Hormones and Preeclampsia [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 348-352. |
[3] | LIN Kai-xuan, WEN Hao, YANG Fu-yan. Visual Analysis of Correlative Studies on Prediction Model of Early-Onset Preeclampsia Based on Knowledge Graph [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 101-107. |
[4] | SONG Qiu-jin, QIAN Xiao-hong, CHEN Qian. Progress on the Relationship between Gut Microbiota and Pregnancy Complications [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 409-413. |
[5] | HE Yue, CUI Hong-mei. Research Progress of Ferroptosis in Obstetric Diseases [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 414-418. |
[6] | CHEN Cheng, FENG Xiao-ling. The Relationship between Interleukin-1β and Pregnancy and Related Diseases [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 161-166. |
[7] | PEI Jiao-jiao, HUANG Chao-lin, CHEN Jiao. Research Progress of Ferroptosis and Placental Diseases [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 425-429. |
[8] | GAO Qian-qian, FENG Xiao-ling. CircRNA and Pregnancy-Related Diseases [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 430-435. |
[9] | HAN Xin-yu, WU Tian-qiang, FENG Xiao-ling. Kisspeptin, Pregnancy and Related Diseases [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(5): 420-426. |
[10] | CAO Xiao-wan, CHEN Li, SONG Zhen-zhen, ZHANG Guo-ying. Advances in the Role of IL-33 in Pregnancy-Related Diseases [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(5): 427-430. |
[11] | ZHANG Xue-ying, YING Xiao-yan, XU Bo-qun. Research Progress in Circular RNA in Female Reproductive System [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(4): 308-313. |
[12] | FENG Xiao-ling, GUO Lu-qin, LI Na. The Role of Placental Exosomes in Preeclampsia [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(4): 345-348. |
[13] | FENG Xiao-ling,JIA Dan,CHEN Lu,ZHANG Yang. Placenta Exosomes, Pregnancy and Complications [J]. Journal of International Reproductive Health/Family Planning, 2019, 38(2): 166-169. |
[14] | LI Sai, GUO Zhen, ZHOU Huan-huan. Effect of Low-Molecular-Weight Heparin on Pregnancy Outcomes in Patients with Preeclampsia History [J]. Journal of International Reproductive Health/Family Planning, 2018, 37(4): 300-302. |
[15] | CHEN Meng-fan,CHEN Dan-qing. Research Progress of Triglyceride Metabolism During Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2018, 37(2): 154-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||