Journal of International Reproductive Health/Family Planning ›› 2021, Vol. 40 ›› Issue (5): 391-396.doi: 10.12280/gjszjk.20210121
• Review • Previous Articles Next Articles
ZHOU Zhi-xian, ZHU Fang, YIN Huan, SU Ye, CAI Hai-yi, FU Chun()
Received:
2021-03-17
Published:
2021-09-15
Online:
2021-09-29
Contact:
FU Chun
E-mail:fuchun0814@csu.edu.cn
ZHOU Zhi-xian, ZHU Fang, YIN Huan, SU Ye, CAI Hai-yi, FU Chun. DNA Damage and Repair during Ovarian Reserve Formation[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(5): 391-396.
Add to citation manager EndNote|Ris|BibTeX
修复途径 | 作用阶段 | 损伤因素 | 损伤类型 | 修复作用 |
---|---|---|---|---|
BER途径 | 表观遗传修饰 | 内源烷基化剂、内源代谢物、辐射 | 小DNA损伤和加合物 | 替换单个受损核苷酸 |
MMR途径 | DNA复制、减数分裂重组 | 自发性dNTP错配、辐射 | 碱基错配、插入、缺失 | 修复dNTP错误匹配 |
HR途径 | 有丝分裂、减数分裂重组 | 减数分裂重组诱导、辐射 | DSB、停滞复制叉 | 修复DSB、恢复停滞复制叉 |
FA途径 | 有丝分裂、减数分裂重组 | 内源代谢物、链间交联剂、辐射 | ICL、停滞复制叉 | 修复ICL、协调多种DNA修复活动 |
NER途径 | DNA交联 | DNA交联、辐射 | 大块DNA加合物、严重DNA损伤 | 更换大段DNA |
修复途径 | 作用阶段 | 损伤因素 | 损伤类型 | 修复作用 |
---|---|---|---|---|
BER途径 | 表观遗传修饰 | 内源烷基化剂、内源代谢物、辐射 | 小DNA损伤和加合物 | 替换单个受损核苷酸 |
MMR途径 | DNA复制、减数分裂重组 | 自发性dNTP错配、辐射 | 碱基错配、插入、缺失 | 修复dNTP错误匹配 |
HR途径 | 有丝分裂、减数分裂重组 | 减数分裂重组诱导、辐射 | DSB、停滞复制叉 | 修复DSB、恢复停滞复制叉 |
FA途径 | 有丝分裂、减数分裂重组 | 内源代谢物、链间交联剂、辐射 | ICL、停滞复制叉 | 修复ICL、协调多种DNA修复活动 |
NER途径 | DNA交联 | DNA交联、辐射 | 大块DNA加合物、严重DNA损伤 | 更换大段DNA |
[1] |
Lew R. Natural history of ovarian function including assessment of ovarian reserve and premature ovarian failure[J]. Best Pract Res Clin Obstet Gynaecol, 2019, 55:2-13. doi: 10.1016/j.bpobgyn.2018.05.005.
doi: 10.1016/j.bpobgyn.2018.05.005 URL |
[2] |
Huhtaniemi I, Hovatta O, La Marca A, et al. Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency[J]. Trends Endocrinol Metab, 2018, 29(6):400-419. doi: 10.1016/j.tem.2018.03.010.
doi: 10.1016/j.tem.2018.03.010 URL |
[3] |
Patel H, Bhartiya D, Parte S. Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly[J]. J Ovarian Res, 2018, 11(1):3. doi: 10.1186/s13048-017-0377-5.
doi: 10.1186/s13048-017-0377-5 URL |
[4] |
Stringer JM, Winship A, Liew SH, et al. The capacity of oocytes for DNA repair[J]. Cell Mol Life Sci, 2018, 75(15):2777-2792. doi: 10.1007/s00018-018-2833-9.
doi: 10.1007/s00018-018-2833-9 pmid: 29748894 |
[5] |
Wang JJ, Ge W, Zhai QY, et al. Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice[J]. PLoS Biol, 2020, 18(12):e3001025. doi: 10.1371/journal.pbio.3001025.
doi: 10.1371/journal.pbio.3001025 URL |
[6] |
Sun X, Klinger FG, Liu J, et al. miR-378-3p maintains the size of mouse primordial follicle pool by regulating cell autophagy and apoptosis[J]. Cell Death Dis, 2020, 11(9):737. doi: 10.1038/s41419-020-02965-1.
doi: 10.1038/s41419-020-02965-1 URL |
[7] |
Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks[J]. J Biol Chem, 2018, 293(27):10524-10535. doi: 10.1074/jbc.TM118.000372.
doi: 10.1074/jbc.TM118.000372 URL |
[8] |
Bhat KP, Krishnamoorthy A, Dungrawala H, et al. RADX Modulates RAD51 Activity to Control Replication Fork Protection[J]. Cell Rep, 2018, 24(3):538-545. doi: 10.1016/j.celrep.2018.06.061.
doi: 10.1016/j.celrep.2018.06.061 URL |
[9] |
Rickman KA, Noonan RJ, Lach FP, et al. Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links[J]. Genes Dev, 2020, 34(11/12):832-846. doi: 10.1101/gad.336446.120.
doi: 10.1101/gad.336446.120 URL |
[10] |
Naiman K, Campillo-Funollet E, Watson AT, et al. Replication dynamics of recombination-dependent replication forks[J]. Nat Commun, 2021, 12(1):923. doi: 10.1038/s41467-021-21198-0.
doi: 10.1038/s41467-021-21198-0 pmid: 33568651 |
[11] |
Carofiglio F, Sleddens-Linkels E, Wassenaar E, et al. Repair of exogenous DNA double-strand breaks promotes chromosome synapsis in SPO11-mutant mouse meiocytes, and is altered in the absence of HORMAD1[J]. DNA Repair (Amst), 2018, 63:25-38. doi: 10.1016/j.dnarep.2018.01.007.
doi: 10.1016/j.dnarep.2018.01.007 URL |
[12] |
Thomas C, Cavazza T, Schuh M. Aneuploidy in human eggs: contributions of the meiotic spindle[J]. Biochem Soc Trans, 2021, 49(1):107-118. doi: 10.1042/BST20200043.
doi: 10.1042/BST20200043 URL |
[13] |
Winship AL, Stringer JM, Liew SH, et al. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing[J]. Hum Reprod Update, 2018, 24(2):119-134. doi: 10.1093/humupd/dmy002.
doi: 10.1093/humupd/dmy002 pmid: 29377997 |
[14] |
Miao Y, Wang P, Xie B, et al. BRCA2 deficiency is a potential driver for human primary ovarian insufficiency[J]. Cell Death Dis, 2019, 10(7):474. doi: 10.1038/s41419-019-1720-0.
doi: 10.1038/s41419-019-1720-0 URL |
[15] |
ElInati E, Zielinska AP, McCarthy A, et al. The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes[J]. Nat Commun, 2020, 11(1):2598. doi: 10.1038/s41467-020-16441-z.
doi: 10.1038/s41467-020-16441-z pmid: 32451402 |
[16] |
Zhao W, Wiese C, Kwon Y, et al. The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination[J]. Annu Rev Biochem, 2019, 88:221-245. doi: 10.1146/annurev-biochem-013118-111058.
doi: 10.1146/annurev-biochem-013118-111058 URL |
[17] |
Luo W, Guo T, Li G, et al. Variants in Homologous Recombination Genes EXO1 and RAD51 Related with Premature Ovarian Insufficiency[J]. J Clin Endocrinol Metab, 2020, 105(10):dgaa505. doi: 10.1210/clinem/dgaa505.
doi: 10.1210/clinem/dgaa505 |
[18] |
Jaillard S, McElreavy K, Robevska G, et al. STAG3 homozygous missense variant causes primary ovarian insufficiency and male non-obstructive azoospermia[J]. Mol Hum Reprod, 2020, 26(9):665-677. doi: 10.1093/molehr/gaaa050.
doi: 10.1093/molehr/gaaa050 pmid: 32634216 |
[19] |
Heddar A, Beckers D, Fouquet B, et al. A Novel Phenotype Combining Primary Ovarian Insufficiency Growth Retardation and Pilomatricomas With MCM8 Mutation[J]. J Clin Endocrinol Metab, 2020, 105(6):dgaa155. doi: 10.1210/clinem/dgaa155.
doi: 10.1210/clinem/dgaa155 |
[20] |
Alvarez-Mora MI, Todeschini AL, Caburet S, et al. An exome-wide exploration of cases of primary ovarian insufficiency uncovers novel sequence variants and candidate genes[J]. Clin Genet, 2020, 98(3):293-298. doi: 10.1111/cge.13803.
doi: 10.1111/cge.13803 pmid: 32613604 |
[21] |
Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome[J]. Cell Death Differ, 2021, 28(4):1159-1173. doi: 10.1038/s41418-021-00764-5.
doi: 10.1038/s41418-021-00764-5 pmid: 33723374 |
[22] |
Hill RJ, Crossan GP. DNA cross-link repair safeguards genomic stability during premeiotic germ cell development[J]. Nat Genet, 2019, 51(8):1283-1294. doi: 10.1038/s41588-019-0471-2.
doi: 10.1038/s41588-019-0471-2 URL |
[23] |
Dubois EL, Guitton-Sert L, Béliveau M, et al. A Fanci knockout mouse model reveals common and distinct functions for FANCI and FANCD2[J]. Nucleic Acids Res, 2019, 47(14):7532-7547. doi: 10.1093/nar/gkz514.
doi: 10.1093/nar/gkz514 URL |
[24] |
Tsui V, Crismani W. The Fanconi Anemia Pathway and Fertility[J]. Trends Genet, 2019, 35(3):199-214. doi: 10.1016/j.tig.2018.12.007.
doi: 10.1016/j.tig.2018.12.007 URL |
[25] |
Yang X, Zhang X, Jiao J, et al. Rare variants in FANCA induce premature ovarian insufficiency[J]. Hum Genet, 2019, 138(11/12):1227-1236. doi: 10.1007/s00439-019-02059-9.
doi: 10.1007/s00439-019-02059-9 URL |
[26] |
Kolinjivadi AM, Crismani W, Ngeow J. Emerging functions of Fanconi anemia genes in replication fork protection pathways[J]. Hum Mol Genet, 2020, 29(R2):R158-R164. doi: 10.1093/hmg/ddaa087.
doi: 10.1093/hmg/ddaa087 pmid: 32420592 |
[27] |
Lowran K, Campbell L, Popp P, et al. Assembly of a G-Quadruplex Repair Complex by the FANCJ DNA Helicase and the REV1 Polymerase[J]. Genes (Basel), 2019, 11(1):5. doi: 10.3390/genes11010005.
doi: 10.3390/genes11010005 URL |
[28] |
Panday A, Willis NA, Elango R, et al. FANCM regulates repair pathway choice at stalled replication forks[J]. Mol Cell, 2021, 81(11):2428-2444. doi: 10.1016/j.molcel.2021.03.044.
doi: 10.1016/j.molcel.2021.03.044 URL |
[29] |
McNairn AJ, Chuang CH, Bloom JC, et al. Female-biased embryonic death from inflammation induced by genomic instability[J]. Nature, 2019, 567(7746):105-108. doi: 10.1038/s41586-019-0936-6.
doi: 10.1038/s41586-019-0936-6 URL |
[30] |
Jaillard S, Bell K, Akloul L, et al. New insights into the genetic basis of premature ovarian insufficiency: Novel causative variants and candidate genes revealed by genomic sequencing[J]. Maturitas, 2020, 141:9-19. doi: 10.1016/j.maturitas.2020.06.004.
doi: 10.1016/j.maturitas.2020.06.004 URL |
[31] |
Caburet S, Heddar A, Dardillac E, et al. Homozygous hypomorphic BRCA2 variant in primary ovarian insufficiency without cancer or Fanconi anaemia trait[J]. J Med Genet, 2020 Jun 1:jmedgenet-2019-106672. doi: 10.1136/jmedgenet-2019-106672.
doi: 10.1136/jmedgenet-2019-106672 |
[32] |
Hatano Y, Tamada M, Matsuo M, et al. Molecular Trajectory of BRCA1 and BRCA2 Mutations[J]. Front Oncol, 2020, 10:361. doi: 10.3389/fonc.2020.00361.
doi: 10.3389/fonc.2020.00361 URL |
[33] |
Alter BP, Best AF. Frequency of heterozygous germline pathogenic variants in genes for Fanconi anemia in patients with non-BRCA1/BRCA2 breast cancer: a meta-analysis[J]. Breast Cancer Res Treat, 2020, 182(2):465-476. doi: 10.1007/s10549-020-05710-6.
doi: 10.1007/s10549-020-05710-6 URL |
[34] |
Hill P, Leitch HG, Requena CE, et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte[J]. Nature, 2018, 555(7696):392-396. doi: 10.1038/nature25964.
doi: 10.1038/nature25964 URL |
[35] |
Singh V, Kumar Mohanty S, Verma P, et al. XRCC1 deficiency correlates with increased DNA damage and male infertility[J]. Mutat Res Genet Toxicol Environ Mutagen, 2019, 839:1-8. doi: 10.1016/j.mrgentox.2019.01.004.
doi: 10.1016/j.mrgentox.2019.01.004 URL |
[36] |
Toledo M, Sun X, Brieño-Enríquez MA, et al. A mutation in the endonuclease domain of mouse MLH3 reveals novel roles for MutLγ during crossover formation in meiotic prophase I[J]. PLoS Genet, 2019, 15(6):e1008177. doi: 10.1371/journal.pgen.1008177.
doi: 10.1371/journal.pgen.1008177 URL |
[37] |
Milano CR, Holloway JK, Zhang Y, et al. Mutation of the ATPase Domain of MutS Homolog-5 (MSH5) Reveals a Requirement for a Functional MutSγ Complex for All Crossovers in Mammalian Meiosis[J]. G3 (Bethesda), 2019, 9(6):1839-1850. doi: 10.1534/g3.119.400074.
doi: 10.1534/g3.119.400074 URL |
[38] |
Akbari A, Padidar K, Salehi N, et al. Rare missense variant in MSH4 associated with primary gonadal failure in both 46, XX and 46, XY individuals[J]. Hum Reprod, 2021, 36(4):1134-1145. doi: 10.1093/humrep/deaa362.
doi: 10.1093/humrep/deaa362 URL |
[39] |
Cui T, Srivastava AK, Han C, et al. DDB2 represses ovarian cancer cell dedifferentiation by suppressing ALDH1A1[J]. Cell Death Dis, 2018, 9(5):561. doi: 10.1038/s41419-018-0585-y.
doi: 10.1038/s41419-018-0585-y URL |
[40] |
Das S, Naher L, Aka TD, et al. The ECCR1 rs11615, ERCC4 rs2276466, XPC rs2228000 and XPC rs2228001 polymorphisms increase the cervical cancer risk and aggressiveness in the Bangladeshi population[J]. Heliyon, 2021, 7(1):e05919. doi: 10.1016/j.heliyon.2021.e05919.
doi: 10.1016/j.heliyon.2021.e05919 URL |
[41] |
Katari S, Aarabi M, Kintigh A, et al. Chromosomal instability in women with primary ovarian insufficiency[J]. Hum Reprod, 2018, 33(3):531-538. doi: 10.1093/humrep/dey012.
doi: 10.1093/humrep/dey012 URL |
[1] | WANG Dong-xue, BAO Li-li, LIU Shan, YANG Bo. Effect of Modified Flexible Antagonist Protocol on the Outcome of COH in Patients with Normal Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 185-189. |
[2] | LIANG Yue, DONG Jie, XIAO Xi-feng, WANG Xiao-hong. Advancements of MiR-202 in Reproductive Modulation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 228-233. |
[3] | GAO Zhao-yang, ZHANG Ning-qing, CHEN Qiong-hua, WU Rong-feng. The Role of CircRNAs in Follicular Granulosa Cells of Patients with Endometriosis Infertility [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 243-248. |
[4] | CAO Yuan-yuan, JIA Zan-hui, ZHANG Chun-miao. Research Progress of ZP1 Gene Mutation in Empty Follicle Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 127-131. |
[5] | ZHEN Jia, ZHAO Zi-yuan, WANG Zi-lu, SHI Wei, XU Li. Granulosa Cell Autophagy in Pathophysiological Mechanism of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 150-154. |
[6] | WU Jing, LIU Cong, XIE Qing-zhen. The Effect of Microplastics Exposure on Female and Their Offspring Health [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 155-158. |
[7] | XIANG Chun-rong, DENG Zhi-min, DAI Fang-fang, CHENG Yan-xiang. Clinical Studies of MSCs and MSCs-Derived Exosomes in Premature Ovarian Insufficiency, and Research Progress [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 492-497. |
[8] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
[9] | LIU Xu, YANG Ai-jun, LI Ze-wu, SHI Cheng, LIU Li-jun, KONG Xiao-li, WANG Jing-wen. The Mechanism of Platelet-Rich Plasma on Improving Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 329-333. |
[10] | CHEN Qiu-yan, LU Nan, LIU Jia-yin. Clinical Application of Growth Hormone Supplementation in Non-DOR Patients with Previous IVF/ICSI Failure [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 184-188. |
[11] | YANG Zhi-juan, YAO Ting, HOU Hai-yan. Mitophagy and Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 240-244. |
[12] | CHEN Ruo-lin, ZHANG Yun-shan. Mechanisms and Clinical Relevance of Sperm DNA Damage [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 130-134. |
[13] | ZHU Wen-bin, XU Jing-yu, MA Rui-hong, XIA Tian, LUAN Zu-qian. Research Progress of Brain-Derived Neurotrophic Factor and Female Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 140-144. |
[14] | ZHAO Hai-jun, ZHANG Xi-hui, CHEN Jing, LU Jing, ZHANG Hong-feng, CHANG Wen-liang. Comparison of Three Controlled Ovarian Hyperstimulation Protocols in Advanced-Age Infertile Patients with Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 13-17. |
[15] | ZHANG Yu, XIA Tian. Case Report of Pregnancy in Two Patients with Diminished Ovarian Reserve Treated with Traditional and Western Medicine, and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 460-463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||