Journal of International Reproductive Health/Family Planning ›› 2023, Vol. 42 ›› Issue (2): 150-155.doi: 10.12280/gjszjk.20220479
• Review • Previous Articles Next Articles
TIAN Hui, ZHANG Yu, ZHAO Xiao-xi()
Received:
2022-10-11
Published:
2023-03-15
Online:
2023-03-21
Contact:
ZHAO Xiao-xi
E-mail:zhaoxx.3675@163.com
TIAN Hui, ZHANG Yu, ZHAO Xiao-xi. The Relationship between PIWI-Interacting RNA and Reproductive Function[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 150-155.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Liu Y, Dou M, Song X, et al. The emerging role of the piRNA/piwi complex in cancer[J]. Mol Cancer, 2019, 18(1):123. doi: 10.1186/s12943-019-1052-9.
doi: 10.1186/s12943-019-1052-9 pmid: 31399034 |
[2] |
Wang K, Wang T, Gao XQ, et al. Emerging functions of piwi-interacting RNAs in diseases[J]. J Cell Mol Med, 2021, 25(11):4893-4901. doi: 10.1111/jcmm.16466.
doi: 10.1111/jcmm.16466 pmid: 33942984 |
[3] |
Huang X, Fejes Tóth K, Aravin AA. piRNA Biogenesis in Drosophila melanogaster[J]. Trends Genet, 2017, 33(11):882-894. doi: 10.1016/j.tig.2017.09.002.
doi: S0168-9525(17)30153-1 pmid: 28964526 |
[4] |
Wu X, Pan Y, Fang Y, et al. The Biogenesis and Functions of piRNAs in Human Diseases[J]. Mol Ther Nucleic Acids, 2020, 21:108-120. doi: 10.1016/j.omtn.2020.05.023.
doi: 10.1016/j.omtn.2020.05.023 URL |
[5] |
Sokolova OA, Ilyin AA, Poltavets AS, et al. Yb body assembly on the flamenco piRNA precursor transcripts reduces genic piRNA production[J]. Mol Biol Cell, 2019, 30(12):1544-1554. doi: 10.1091/mbc.E17-10-0591.
doi: 10.1091/mbc.E17-10-0591 pmid: 30943101 |
[6] |
Czech B, Munafò M, Ciabrelli F, et al. piRNA-Guided Genome Defense: From Biogenesis to Silencing[J]. Annu Rev Genet, 2018, 52:131-157. doi: 10.1146/annurev-genet-120417-031441.
doi: 10.1146/annurev-genet-120417-031441 pmid: 30476449 |
[7] |
Chen S, Ben S, Xin J, et al. The biogenesis and biological function of PIWI-interacting RNA in cancer[J]. J Hematol Oncol, 2021, 14(1):93. doi: 10.1186/s13045-021-01104-3.
doi: 10.1186/s13045-021-01104-3 |
[8] |
Sato K, Siomi MC. The piRNA pathway in Drosophila ovarian germ and somatic cells[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2020, 96(1):32-42. doi: 10.2183/pjab.96.003.
doi: 10.2183/pjab.96.003 URL |
[9] |
Ding X, Li Y, Lü J, et al. piRNA-823 Is Involved in Cancer Stem Cell Regulation Through Altering DNA Methylation in Association With Luminal Breast Cancer[J]. Front Cell Dev Biol, 2021, 9:641052. doi: 10.3389/fcell.2021.641052.
doi: 10.3389/fcell.2021.641052 URL |
[10] |
Zoch A, Auchynnikava T, Berrens RV, et al. SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation[J]. Nature, 2020, 584(7822):635-639. doi: 10.1038/s41586-020-2557-5.
doi: 10.1038/s41586-020-2557-5 |
[11] |
Schoeberl UE, Mochizuki K. Keeping the soma free of transposons: programmed DNA elimination in ciliates[J]. J Biol Chem, 2011, 286(43):37045-37052. doi: 10.1074/jbc.R111.276964.
doi: 10.1074/jbc.R111.276964 pmid: 21914793 |
[12] |
Mochizuki K. Developmentally programmed, RNA-directed genome rearrangement in Tetrahymena[J]. Dev Growth Differ, 2012, 54(1):108-119. doi: 10.1111/j.1440-169X.2011.01305.x.
doi: 10.1111/j.1440-169X.2011.01305.x URL |
[13] |
Sun YH, Wang RH, Du K, et al. Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs[J]. Nat Commun, 2021, 12(1):5970. doi: 10.1038/s41467-021-26233-8.
doi: 10.1038/s41467-021-26233-8 pmid: 34645830 |
[14] |
Watanabe T, Cheng EC, Zhong M, et al. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline[J]. Genome Res, 2015, 25(3):368-380. doi: 10.1101/gr.180802.114.
doi: 10.1101/gr.180802.114 pmid: 25480952 |
[15] |
Gou LT, Dai P, Yang JH, et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis[J]. Cell Res, 2014, 24(6):680-700. doi: 10.1038/cr.2014.41.
doi: 10.1038/cr.2014.41 |
[16] |
Wang C, Yang ZZ, Guo FH, et al. Heat shock protein DNAJA1 stabilizes PIWI proteins to support regeneration and homeostasis of planarian Schmidtea mediterranea[J]. J Biol Chem, 2019, 294(25):9873-9887. doi: 10.1074/jbc.RA118.004445.
doi: 10.1074/jbc.RA118.004445 pmid: 31076507 |
[17] |
Ma C, Zhang L, Wang X, et al. piRNA-63076 contributes to pulmonary arterial smooth muscle cell proliferation through acyl-CoA dehydrogenase[J]. J Cell Mol Med, 2020, 24(9):5260-5273. doi: 10.1111/jcmm.15179.
doi: 10.1111/jcmm.15179 pmid: 32227582 |
[18] |
Han B, Jung BK, Park SH, et al. Polyubiquitin gene Ubb is required for upregulation of Piwi protein level during mouse testis development[J]. Cell Death Discov, 2021, 7(1):194. doi: 10.1038/s41420-021-00581-2.
doi: 10.1038/s41420-021-00581-2 pmid: 34312369 |
[19] |
Gou LT, Kang JY, Dai P, et al. Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis[J]. Cell, 2017, 169(6):1090-1104.e13. doi: 10.1016/j.cell.2017.04.034.
doi: 10.1016/j.cell.2017.04.034 URL |
[20] |
Dai P, Wang X, Gou LT, et al. A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis[J]. Cell, 2019, 179(7):1566-1581.e16. doi: 10.1016/j.cell.2019.11.022.
doi: S0092-8674(19)31278-4 pmid: 31835033 |
[21] |
Cornes E, Bourdon L, Singh M, et al. piRNAs initiate transcriptional silencing of spermatogenic genes during C. elegans germline development[J]. Dev Cell, 2022, 57(2):180-196.e7. doi: 10.1016/j.devcel.2021.11.025.
doi: 10.1016/j.devcel.2021.11.025 URL |
[22] |
Xu L, Qiu L, Chang G, et al. Discovery of piRNAs Pathway Associated with Early-Stage Spermatogenesis in Chicken[J]. PLoS One, 2016, 11(4):e0151780. doi: 10.1371/journal.pone.0151780.
doi: 10.1371/journal.pone.0151780 URL |
[23] |
Chu C, Yu L, Henry-Berger J, et al. Knockout of glutathione peroxidase 5 down-regulates the piRNAs in the caput epididymidis of aged mice[J]. Asian J Androl, 2020, 22(6):590-601. doi: 10.4103/aja.aja_3_20.
doi: 10.4103/aja.aja_3_20 URL |
[24] |
Hutcheon K, McLaughlin EA, Stanger SJ, et al. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa[J]. RNA Biol, 2017, 14(12):1776-1790. doi: 10.1080/15476286.2017.1356569.
doi: 10.1080/15476286.2017.1356569 pmid: 28816603 |
[25] |
Cao C, Wen Y, Wang X, et al. Testicular piRNA profile comparison between successful and unsuccessful micro-TESE retrieval in NOA patients[J]. J Assist Reprod Genet, 2018, 35(5):801-808. doi: 10.1007/s10815-018-1134-4.
doi: 10.1007/s10815-018-1134-4 |
[26] |
Nagirnaja L, Mørup N, Nielsen JE, et al. Variant PNLDC1, Defective piRNA Processing, and Azoospermia[J]. N Engl J Med, 2021, 385(8):707-719. doi: 10.1056/NEJMoa2028973.
doi: 10.1056/NEJMoa2028973 URL |
[27] |
Choi H, Wang Z, Dean J. Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA[J]. PLoS Genet, 2021, 17(4):e1009485. doi: 10.1371/journal.pgen.1009485.
doi: 10.1371/journal.pgen.1009485 URL |
[28] |
Shen L, Yu C, Wu Y, et al. Transcriptomic landscape of GC-2spd(ts) cell in response to the downregulation of piR-1207/2107[J]. Andrologia, 2022, 54(9):e14522. doi: 10.1111/and.14522.
doi: 10.1111/and.14522 |
[29] |
Carmell MA, Girard A, van de Kant HJ, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline[J]. Dev Cell, 2007, 12(4):503-514. doi: 10.1016/j.devcel.2007.03.001.
doi: 10.1016/j.devcel.2007.03.001 pmid: 17395546 |
[30] |
Huang H, Gao Q, Peng X, et al. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling[J]. Dev Cell, 2011, 20(3):376-387. doi: 10.1016/j.devcel.2011.01.004.
doi: 10.1016/j.devcel.2011.01.004 pmid: 21397848 |
[31] |
Zhang H, Zhang F, Chen Q, et al. The piRNA pathway is essential for generating functional oocytes in golden hamsters[J]. Nat Cell Biol, 2021, 23(9):1013-1022. doi: 10.1038/s41556-021-00750-6.
doi: 10.1038/s41556-021-00750-6 pmid: 34489574 |
[32] |
Li Y, Liang Z, Liang Z, et al. Abnormal PIWI-interacting RNA profile and its association with the deformed extracellular matrix of oocytes from recurrent oocyte maturation arrest patients[J]. Fertil Steril, 2021, 115(5):1318-1326. doi: 10.1016/j.fertnstert.2020.11.037.
doi: 10.1016/j.fertnstert.2020.11.037 pmid: 33622565 |
[33] |
Hutt KJ, Lim SL, Zhang QH, et al. HENMT1 is involved in the maintenance of normal female fertility in the mouse[J]. Mol Hum Reprod, 2021, 27(11):gaab061. doi: 10.1093/molehr/gaab061.
doi: 10.1093/molehr/gaab061 URL |
[1] | JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian. Research Progress on the Correlation between Oxidative Stress and Aneuploidy in Oocytes of Aging Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 415-419. |
[2] | WEN Xing-xing, CHAI Meng-han, YANG Ni, ZOU Hui-juan, ZHANG Zhi-guo, LI Lin, CHEN Bei-li. A Case of Oocyte Maturation Arrest Caused by Heterozygous Variation of TUBB8 Gene c.154-156del [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 17-19. |
[3] | ZHANG Yu-jie, WANG Wen-cheng, ZHANG Ning. Research Progress of GDF-9 and BMP-15 on Follicular Development and Insulin Resistance in PCOS [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 487-491. |
[4] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
[5] | LIU Xu, YANG Ai-jun, LI Ze-wu, SHI Cheng, LIU Li-jun, KONG Xiao-li, WANG Jing-wen. The Mechanism of Platelet-Rich Plasma on Improving Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 329-333. |
[6] | LI Yan, HU Fang-fang, CHEN Huan-huan, ZHANG Lei, ZHANG Cui-lian, LIANG Lin-lin. Research Progress of In Vitro Three-Dimensional Culture System of Preantral Follicles [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 221-225. |
[7] | YANG Zhi-juan, YAO Ting, HOU Hai-yan. Mitophagy and Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 240-244. |
[8] | CUI Yu-gui, JIA Hong-yan, SHI Chen-nan, YAN Zheng-jie, LIU Jia-yin, MA Xiang. Clinical Practice of Oocyte Mitochondrial Transplantation and Ethical Issue [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 89-94. |
[9] | FENG Xiao-ling, CHEN Yao, WANG Ying. Effects of Branched-Chain Amino Acids on Metabolism and Reproduction in Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 72-76. |
[10] | WANG Zi-xin, SONG Jia-yi, XIA Tian. Effect of Circadian Rhythm Disorder on Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 317-321. |
[11] | ZHU Yuan, YI Shan-ling, ZHOU Jian-jun. Predictors Analysis of Obtaining MⅡ Oocytes or Transferable Embryos in Mild Ovarian Stimulation with Clomiphene Citrate [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 6-11. |
[12] | WU Shuo, JIAO Li-yuan, HOU Hai-yan. Research Progress of Antioxidants Supplement on Improvement of Oocyte Mitochondrial Function and Reproductive Outcomes in Infertile Women [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 62-67. |
[13] | MAO Fei, FENG Rui-zhi, QIAN Yun. Research Progress in Metabolomics of Mammalian Follicles [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 471-475. |
[14] | GAO Er-meng, CHIAN Ri-cheng. The Differences between Cumulus Cells and Mural Granulosa Cells in Human Follicles [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(5): 386-390. |
[15] | ZHANG Meng-hui, LIU Xiao-cong, GUO Yi-hong. N6-Methyladenosine in Reproductive System: Effect and Regulation [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(4): 306-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||