Journal of International Reproductive Health/Family Planning ›› 2023, Vol. 42 ›› Issue (4): 323-328.doi: 10.12280/gjszjk.20230024
• Review • Previous Articles Next Articles
GUO Yan, DIAO Rui-ying, SU Dan-na, WANG Li-ping()
Received:
2023-01-18
Published:
2023-07-15
Online:
2023-07-26
Contact:
WANG Li-ping
E-mail:wlilyu@hotmail.com
GUO Yan, DIAO Rui-ying, SU Dan-na, WANG Li-ping. Tissue-Resident Macrophages and Common Ovarian Diseases[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 323-328.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Wu R, Van der Hoek KH, Ryan NK, et al. Macrophage contributions to ovarian function[J]. Hum Reprod Update, 2004, 10(2):119-133. doi: 10.1093/humupd/dmh011.
doi: 10.1093/humupd/dmh011 pmid: 15073142 |
[2] |
Zhang Z, Schlamp F, Huang L, et al. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary[J]. Reproduction, 2020, 159(3):325-337. doi: 10.1530/REP-19-0330.
doi: 10.1530/REP-19-0330 pmid: 31940276 |
[3] |
Turner EC, Hughes J, Wilson H, et al. Conditional ablation of macrophages disrupts ovarian vasculature[J]. Reproduction, 2011, 141(6):821-831. doi: 10.1530/REP-10-0327.
doi: 10.1530/REP-10-0327 pmid: 21393340 |
[4] |
Jokela H, Lokka E, Kiviranta M, et al. Fetal-derived macrophages persist and sequentially maturate in ovaries after birth in mice[J]. Eur J Immunol, 2020, 50(10):1500-1514. doi: 10.1002/eji.202048531.
doi: 10.1002/eji.202048531 URL |
[5] |
Li N, Li Z, Fang F, et al. Two distinct resident macrophage populations coexist in the ovary[J]. Front Immunol, 2022, 13:1007711. doi: 10.3389/fimmu.2022.1007711.
doi: 10.3389/fimmu.2022.1007711 URL |
[6] |
李念娱, 焦雪, 秦莹莹. 性腺组织驻留巨噬细胞的研究进展[J]. 中华生殖与避孕杂志, 2022, 42(4):419-424. doi: 10.3760/cma.j.cn101441-20200901-00472.
doi: 10.3760/cma.j.cn101441-20200901-00472 |
[7] |
Sun JX, Xu XH, Jin L. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds[J]. Front Immunol, 2022, 13:880286. doi: 10.3389/fimmu.2022.880286.
doi: 10.3389/fimmu.2022.880286 URL |
[8] |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9):6425-6440. doi: 10.1002/jcp.26429.
doi: 10.1002/jcp.26429 pmid: 29319160 |
[9] |
Duffy DM, Ko C, Jo M, et al. Ovulation: Parallels With Inflammatory Processes[J]. Endocr Rev, 2019, 40(2):369-416. doi: 10.1210/er.2018-00075.
doi: 10.1210/er.2018-00075 pmid: 30496379 |
[10] |
Caillaud M, Duchamp G, Gérard N. In vivo effect of interleukin-1beta and interleukin-1RA on oocyte cytoplasmic maturation, ovulation, and early embryonic development in the mare[J]. Reprod Biol Endocrinol, 2005, 3:26. doi: 10.1186/1477-7827-3-26.
doi: 10.1186/1477-7827-3-26 |
[11] |
Zhu Y. Metalloproteases in gonad formation and ovulation[J]. Gen Comp Endocrinol, 2021, 314:113924. doi: 10.1016/j.ygcen.2021.113924.
doi: 10.1016/j.ygcen.2021.113924 URL |
[12] |
赵久华, 郑舒婷, 林凤屏, 等. 免疫细胞在黄体发育及退化过程中的作用[J]. 中国医学科学院学报, 2022, 44(3):504-509. doi: 10.3881/j.issn.1000-503X.13309.
doi: 10.3881/j.issn.1000-503X.13309 |
[13] |
Wu J, Carlock C, Zhou C, et al. IL-33 is required for disposal of unnecessary cells during ovarian atresia through regulation of autophagy and macrophage migration[J]. J Immunol, 2015, 194(5):2140-2147. doi: 10.4049/jimmunol.1402503.
doi: 10.4049/jimmunol.1402503 pmid: 25617473 |
[14] |
Cui LL, Yang G, Pan J, et al. Tumor necrosis factor α knockout increases fertility of mice[J]. Theriogenology, 2011, 75(5):867-876. doi: 10.1016/j.theriogenology.2010.10.029.
doi: 10.1016/j.theriogenology.2010.10.029 URL |
[15] |
Pepe G, Locati M, Della Torre S, et al. The estrogen-macrophage interplay in the homeostasis of the female reproductive tract[J]. Hum Reprod Update, 2018, 24(6):652-672. doi: 10.1093/humupd/dmy026.
doi: 10.1093/humupd/dmy026 pmid: 30256960 |
[16] |
Liang Y, Xie H, Wu J, et al. Villainous role of estrogen in macrophage-nerve interaction in endometriosis[J]. Reprod Biol Endocrinol, 2018, 16(1):122. doi: 10.1186/s12958-018-0441-z.
doi: 10.1186/s12958-018-0441-z |
[17] |
Ono Y, Nagai M, Yoshino O, et al. CD11c+ M1-like macrophages (MΦs) but not CD206+ M2-like MΦ are involved in folliculogenesis in mice ovary[J]. Sci Rep, 2018, 8(1):8171. doi: 10.1038/s41598-018-25837-3.
doi: 10.1038/s41598-018-25837-3 pmid: 29802255 |
[18] |
McFee RM, Rozell TG, Cupp AS. The balance of proangiogenic and antiangiogenic VEGFA isoforms regulate follicle development[J]. Cell Tissue Res, 2012, 349(3):635-647. doi: 10.1007/s00441-012-1330-y.
doi: 10.1007/s00441-012-1330-y pmid: 22322423 |
[19] |
Rizov M, Andreeva P, Dimova I. Molecular regulation and role of angiogenesis in reproduction[J]. Taiwan J Obstet Gynecol, 2017, 56(2):127-132. doi: 10.1016/j.tjog.2016.06.019.
doi: S1028-4559(17)30001-3 pmid: 28420494 |
[20] |
Zeng XY, Xie H, Yuan J, et al. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression[J]. Cancer Biol Ther, 2019, 20(7):956-966. doi: 10.1080/15384047.2018.1564567.
doi: 10.1080/15384047.2018.1564567 URL |
[21] |
Tan Z, Gong X, Li Y, et al. Impacts of endometrioma on ovarian aging from basic science to clinical management[J]. Front Endocrinol(Lausanne), 2022, 13:1073261. doi: 10.3389/fendo.2022.1073261.
doi: 10.3389/fendo.2022.1073261 |
[22] |
Taylor HS, Kotlyar AM, Flores VA. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations[J]. Lancet, 2021, 397(10276):839-852. doi: 10.1016/S0140-6736(21)00389-5.
doi: 10.1016/S0140-6736(21)00389-5 pmid: 33640070 |
[23] |
Laganà AS, Salmeri FM, Ban Frangež H, et al. Evaluation of M1 and M2 macrophages in ovarian endometriomas from women affected by endometriosis at different stages of the disease[J]. Gynecol Endocrinol, 2020, 36(5):441-444. doi: 10.1080/09513590.2019.1683821.
doi: 10.1080/09513590.2019.1683821 pmid: 31663401 |
[24] |
Liu X, Zhang Q, Guo SW. Histological and Immunohistochemical Characterization of the Similarity and Difference Between Ovarian Endometriomas and Deep Infiltrating Endometriosis[J]. Reprod Sci, 2018, 25(3):329-340. doi: 10.1177/1933719117718275.
doi: 10.1177/1933719117718275 pmid: 28718381 |
[25] |
Filippi I, Carrarelli P, Luisi S, et al. Different Expression of Hypoxic and Angiogenic Factors in Human Endometriotic Lesions[J]. Reprod Sci, 2016, 23(4):492-497. doi: 10.1177/1933719115607978.
doi: 10.1177/1933719115607978 pmid: 26408396 |
[26] |
Zhang D, Yu Y, Duan T, et al. The role of macrophages in reproductive-related diseases[J]. Heliyon, 2022, 8(11):e11686. doi: 10.1016/j.heliyon.2022.e11686.
doi: 10.1016/j.heliyon.2022.e11686 URL |
[27] |
Xiong YL, Liang XY, Yang X, et al. Low-grade chronic inflammation in the peripheral blood and ovaries of women with polycystic ovarian syndrome[J]. Eur J Obstet Gynecol Reprod Biol, 2011, 159(1):148-150. doi: 10.1016/j.ejogrb.2011.07.012.
doi: 10.1016/j.ejogrb.2011.07.012 URL |
[28] |
Goteri G, Lucarini G, Zizzi A, et al. Proangiogenetic molecules, hypoxia-inducible factor-1alpha and nitric oxide synthase isoforms in ovarian endometriotic cysts[J]. Virchows Arch, 2010, 456(6):703-710. doi: 10.1007/s00428-010-0929-1.
doi: 10.1007/s00428-010-0929-1 URL |
[29] |
Chon SJ, Umair Z, Yoon MS. Premature Ovarian Insufficiency: Past, Present, and Future[J]. Front Cell Dev Biol, 2021, 9:672890. doi: 10.3389/fcell.2021.672890.
doi: 10.3389/fcell.2021.672890 URL |
[30] |
Ishizuka B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI)[J]. Front Endocrinol(Lausanne), 2021, 12:626924. doi: 10.3389/fendo.2021.626924.
doi: 10.3389/fendo.2021.626924 |
[31] |
Liu P, Zhang X, Hu J, et al. Dysregulated cytokine profile associated with biochemical premature ovarian insufficiency[J]. Am J Reprod Immunol, 2020, 84(4):e13292. doi: 10.1111/aji.13292.
doi: 10.1111/aji.13292 |
[32] |
Taghavi SA, Ashrafi M, Mehdizadeh M, et al. Toll-like receptors expression in follicular cells of patients with poor ovarian response[J]. Int J Fertil Steril, 2014, 8(2):183-192.
pmid: 25083184 |
[33] |
Briley SM, Jasti S, McCracken JM, et al. Reproductive age-associated fibrosis in the stroma of the mammalian ovary[J]. Reproduction, 2016, 152(3):245-260. doi: 10.1530/REP-16-0129.
doi: 10.1530/REP-16-0129 pmid: 27491879 |
[1] | BAI Ruo-yan, WANG Yan-qiang, CHEN Jing-xia. A Case of Brain Abscess Secondary to Intrauterine Device-Related Ovarian Abscess in A Postmenopausal Woman [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 485-489. |
[2] | LI An-qi, ZHU Meng-yi, WANG Yu, GAO Jing-shu, WU Xiao-ke. Potential Application of Tanshinone in the Treatment of Polycystic Ovary Syndrome and Mechanism [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 494-500. |
[3] | LEI Rui-xiang, WAN Yi, LI Yu-zi, GUAN De-feng, ZHANG Xue-hong. Association of Circadian Rhythm Disorders with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 501-505. |
[4] | QIAO Xin-yue, TAO Ai-lin, FENG Xiao-ling, CHEN Lu. Research on the Correlation between Polycystic Ovary Syndrome and Anxiety and Depression Disorders [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 506-511. |
[5] | TIAN Dejier, FENG Xiao-ling. Possible Application of Myo-Inositol and D-Chiro-Inositol in Treatment of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 512-517. |
[6] | YANG Qin, WANG Han-ting, CAO Yuan-yuan, ZHOU Jun, WANG Gui-ling. Effect of Resveratrol on the Function of Ovarian Granulose Cells [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 524-528. |
[7] | GAO Zheng, LI Meng-yuan, LI Bo, LIANG Jing-qiao, ZHANG Ya-dong, XU Xin. Efficacy of Chinese Medicine Compound on Abnormal Glucose and Lipid Metabolism in Patients with Obese Polycystic Ovary Syndrome: A Meta Analysis [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 368-377. |
[8] | ZHU Hai-ying, QI Dan-dan, SUN Ping-ping, SUN Na, LUAN Su-xian. A Case Report of Ovarian Hyperstimulation Syndrome Combined with Ovarian Torsion after Assisted Reproductive Technology Assisted Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 401-405. |
[9] | LI Xuan-ang, WANG Ting-ting, XIANG Shan, ZHAO Shuai, LIAN Fang. Research Progress of Ferroptosis in Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 425-429. |
[10] | LI Dan-ping, LIAN Fang, XIANG Shan. New Progress in the Mechanism of Metformin Therapy for Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 343-347. |
[11] | SHI Bai-chao, CHANG Hui, WANG Yu, LU Feng-juan, WANG Kai-yue, GUAN Mu-xin, MA Liang, WU Xiao-ke. The Role of Gut Microbiota in Patients with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 238-242. |
[12] | YE Lin, HOU Zhi-jin, MENG Yu-shi. Research Progress of Sirolimus in the Field of Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 132-137. |
[13] | WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, XIA Tian. Immunometabolic Microenvironment at the Maternal-Fetal Interface Regulating Embryo Implantation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 138-143. |
[14] | DAI He-qi, MAO Fei, FENG Rui-zhi, QIAN Yun. The Role of LncRNA as CeRNA in Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 144-149. |
[15] | ZHEN Jia, ZHAO Zi-yuan, WANG Zi-lu, SHI Wei, XU Li. Granulosa Cell Autophagy in Pathophysiological Mechanism of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 150-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||