Journal of International Reproductive Health/Family Planning ›› 2022, Vol. 41 ›› Issue (3): 252-257.doi: 10.12280/gjszjk.20220023
• Review • Previous Articles Next Articles
CHEN Ming-li, ZHAO Xiao-li, FENG Wei-hua, XIA Tian()
Received:
2022-01-11
Published:
2022-05-15
Online:
2022-05-30
Contact:
XIA Tian
E-mail:xiatian76@163.com
CHEN Ming-li, ZHAO Xiao-li, FENG Wei-hua, XIA Tian. Regulation of Bone Morphogenetic Protein 15 on Follicular Development and Its Relationship with Reproductive Endocrine Diseases[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(3): 252-257.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Cui X, Jing X, Wu X, et al. Abnormal expression levels of BMP15/Smad1 are associated with granulosa cell apoptosis in patients with polycystic ovary syndrome[J]. Mol Med Rep, 2017, 16(6):8231-8236. doi: 10.3892/mmr.2017.7658.
doi: 10.3892/mmr.2017.7658 URL |
[2] |
Chu YL, Xu YR, Yang WX, et al. The role of FSH and TGF-β superfamily in follicle atresia[J]. Aging(Albany NY), 2018, 10(3):305-321. doi: 10.18632/aging.101391.
doi: 10.18632/aging.101391 |
[3] |
Chang HM, Qiao J, Leung PC. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors[J]. Hum Reprod Update, 2016, 23(1):1-18. doi: 10.1093/humupd/dmw039.
doi: 10.1093/humupd/dmw039 URL |
[4] |
Persani L, Rossetti R, Di Pasquale E, et al. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders[J]. Hum Reprod Update, 2014, 20(6):869-883. doi: 10.1093/humupd/dmu036.
doi: 10.1093/humupd/dmu036 pmid: 24980253 |
[5] |
Mottershead DG, Sugimura S, Al-Musawi SL, et al. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality[J]. J Biol Chem, 2015, 290(39):24007-24020. doi: 10.1074/jbc.M115.671487.
doi: 10.1074/jbc.M115.671487 pmid: 26254468 |
[6] |
Margulis S, Abir R, Felz C, et al. Bone morphogenetic protein 15 expression in human ovaries from fetuses, girls, and women[J]. Fertil Steril, 2009, 92(5):1666-1673. doi: 10.1016/j.fertnstert.2008.08.119.
doi: 10.1016/j.fertnstert.2008.08.119 pmid: 18980767 |
[7] |
Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence[J]. Dev Biol, 2006, 296(2):514-521. doi: 10.1016/j.ydbio.2006.06.026.
doi: 10.1016/j.ydbio.2006.06.026 pmid: 16854407 |
[8] |
Velásquez A, Mellisho E, Castro FO, et al. Effect of BMP15 and/or AMH during in vitro maturation of oocytes from involuntarily culled dairy cows[J]. Mol Reprod Dev, 2019, 86(2):209-223. doi: 10.1002/mrd.23096.
doi: 10.1002/mrd.23096 URL |
[9] |
Delgado JC, Hamilton T, Mendes CM, et al. Bone morphogenetic protein 15 supplementation enhances cumulus expansion, nuclear maturation and progesterone production of in vitro-matured bovine cumulus-oocyte complexes[J]. Reprod Domest Anim, 2021, 56(5):754-763. doi: 10.1111/rda.13914.
doi: 10.1111/rda.13914 URL |
[10] |
Dey SR, Deb GK, Ha AN, et al. Coculturing denuded oocytes during the in vitro maturation of bovine cumulus oocyte complexes exerts a synergistic effect on embryo development[J]. Theriogenology, 2012, 77(6):1064-1077. doi: 10.1016/j.theriogenology.2011.10.009.
doi: 10.1016/j.theriogenology.2011.10.009 pmid: 22153275 |
[11] |
Sugimura S, Ritter LJ, Sutton-McDowall ML, et al. Amphiregulin co-operates with bone morphogenetic protein 15 to increase bovine oocyte developmental competence: effects on gap junction-mediated metabolite supply[J]. Mol Hum Reprod, 2014, 20(6):499-513. doi: 10.1093/molehr/gau013.
doi: 10.1093/molehr/gau013 pmid: 24557840 |
[12] |
Sugimura S, Ritter LJ, Rose RD, et al. Promotion of EGF receptor signaling improves the quality of low developmental competence oocytes[J]. Dev Biol, 2015, 403(2):139-149. doi: 10.1016/j.ydbio.2015.05.008.
doi: 10.1016/j.ydbio.2015.05.008 pmid: 25981108 |
[13] |
Sirait B, Wiweko B, Jusuf AA, et al. Oocyte Competence Biomarkers Associated With Oocyte Maturation: A Review[J]. Front Cell Dev Biol, 2021, 9:710292. doi: 10.3389/fcell.2021.710292.
doi: 10.3389/fcell.2021.710292 URL |
[14] |
Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells[J]. J Biol Chem, 2003, 278(1):304-310. doi: 10.1074/jbc.M207362200.
doi: 10.1074/jbc.M207362200 URL |
[15] |
Shimizu K, Nakamura T, Bayasula, et al. Molecular mechanism of FSHR expression induced by BMP15 in human granulosa cells[J]. J Assist Reprod Genet, 2019, 36(6):1185-1194. doi: 10.1007/s10815-019-01469-y.
doi: 10.1007/s10815-019-01469-y URL |
[16] |
Otsuka F, Shimasaki S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis[J]. Proc Natl Acad Sci U S A, 2002, 99(12):8060-8065. doi: 10.1073/pnas.122066899.
doi: 10.1073/pnas.122066899 pmid: 12048244 |
[17] |
Hussein TS, Froiland DA, Amato F, et al. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins[J]. J Cell Sci, 2005, 118(Pt 22):5257-5268. doi: 10.1242/jcs.02644.
doi: 10.1242/jcs.02644 pmid: 16263764 |
[18] |
Zhai B, Liu H, Li X, BMP15 prevents cumulus cell apoptosis through CCL2 and FBN1 in porcine ovaries[J]. Cell Physiol Biochem, 2013, 32(2):264-278. doi: 10.1159/000354435.
doi: 10.1159/000354435 pmid: 23942191 |
[19] |
Yao W, Wang S, Du X, et al. SMAD4 Inhibits Granulosa Cell Apoptosis via the miR-183-96-182 Cluster and FoxO1 Axis[J]. Reprod Sci, 2022, 29(5):1577-1585. doi: 10.1007/s43032-021-00690-4.
doi: 10.1007/s43032-021-00690-4 URL |
[20] |
Lawrenz B, Melado L, Fatemi H. Premature progesterone rise in ART-cycles[J]. Reprod Biol, 2018, 18(1):1-4. doi: 10.1016/j.repbio.2018.01.001.
doi: 10.1016/j.repbio.2018.01.001 |
[21] |
Otsuka F, Yamamoto S, Erickson GF, et al. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression[J]. J Biol Chem, 2001, 276(14):11387-11392. doi: 10.1074/jbc.M010043200.
doi: 10.1074/jbc.M010043200 pmid: 11154695 |
[22] |
Chang HM, Cheng JC, Klausen C, et al. BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells[J]. Mol Endocrinol, 2013, 27(12):2093-2104. doi: 10.1210/me.2013-1233.
doi: 10.1210/me.2013-1233 URL |
[23] |
Wang W, Chen X, Li X, et al. Interference RNA-based silencing of endogenous SMAD4 in porcine granulosa cells resulted in decreased FSH-mediated granulosa cells proliferation and steroidogenesis[J]. Reproduction, 2011, 141(5):643-651. doi: 10.1530/REP-10-0098.
doi: 10.1530/REP-10-0098 pmid: 21292728 |
[24] |
Risal S, Pei Y, Lu H, et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome[J]. Nat Med, 2019, 25(12):1894-1904. doi: 10.1038/s41591-019-0666-1.
doi: 10.1038/s41591-019-0666-1 URL |
[25] |
Yang D, Li N, Ma A, et al. Identification of Potential Biomarkers of Polycystic Ovary Syndrome via Integrated Bioinformatics Analysis[J]. Reprod Sci, 2021, 28(5):1353-1361. doi: 10.1007/s43032-020-00352-x.
doi: 10.1007/s43032-020-00352-x URL |
[26] |
Wei LN, Huang R, Li LL, et al. Reduced and delayed expression of GDF9 and BMP15 in ovarian tissues from women with polycystic ovary syndrome[J]. J Assist Reprod Genet, 2014, 31(11):1483-1490. doi: 10.1007/s10815-014-0319-8.
doi: 10.1007/s10815-014-0319-8 URL |
[27] |
Liu J, Wang B, Wei Z, et al. Mutational analysis of human bone morphogenetic protein 15 in Chinese women with polycystic ovary syndrome[J]. Metabolism, 2011, 60(11):1511-1514. doi: 10.1016/j.metabol.2010.10.006.
doi: 10.1016/j.metabol.2010.10.006 URL |
[28] |
Mehdizadeh A, Sheikhha MH, Kalantar SM, et al. Mutation analysis of exon1 of bone morphogenetic protein-15 gene in Iranian patients with polycystic ovarian syndrome[J]. Int J Reprod Biomed, 2016, 14(8):527-532.
pmid: 27679828 |
[29] |
Belli M, Shimasaki S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function[J]. Vitam Horm, 2018, 107:317-348. doi: 10.1016/bs.vh.2017.12.003.
doi: 10.1016/bs.vh.2017.12.003 |
[30] |
Qin Y, Tang T, Li W, et al. Bone Morphogenetic Protein 15 Knockdown Inhibits Porcine Ovarian Follicular Development and Ovulation[J]. Front Cell Dev Biol, 2019, 7:286. doi: 10.3389/fcell.2019.00286.
doi: 10.3389/fcell.2019.00286 URL |
[31] |
Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene[J]. Am J Hum Genet, 2004, 75(1):106-111. doi: 10.1086/422103.
doi: 10.1086/422103 pmid: 15136966 |
[32] |
Rossetti R, Ferrari I, Bestetti I, et al. Fundamental role of BMP15 in human ovarian folliculogenesis revealed by null and missense mutations associated with primary ovarian insufficiency[J]. Hum Mutat, 2020, 41(5):983-997. doi: 10.1002/humu.23988.
doi: 10.1002/humu.23988 URL |
[33] |
Afkhami F, Shahbazi S, Farzadi L, et al. Novel bone morphogenetic protein 15 (BMP15) gene variants implicated in premature ovarian insufficiency[J]. Reprod Biol Endocrinol, 2022, 20(1):42. doi: 10.1186/s12958-022-00913-6.
doi: 10.1186/s12958-022-00913-6 |
[34] |
Ferrarini E, De Marco G, Orsolini F, et al. Characterization of a novel mutation V136L in bone morphogenetic protein 15 identified in a woman affected by POI[J]. J Ovarian Res, 2021, 14(1):85. doi: 10.1186/s13048-021-00836-7.
doi: 10.1186/s13048-021-00836-7 pmid: 34187539 |
[35] |
Santos M, Cordts EB, Peluso C, et al. Association of BMP15 and GDF9 variants to premature ovarian insufficiency[J]. J Assist Reprod Genet, 2019, 36(10):2163-2169. doi: 10.1007/s10815-019-01548-0.
doi: 10.1007/s10815-019-01548-0 URL |
[36] |
Park MJ, Ahn JW, Kim KH, et al. Prediction of ovarian aging using ovarian expression of BMP15, GDF9, and C-KIT[J]. Exp Biol Med(Maywood), 2020, 245(8):711-719. doi: 10.1177/1535370220915826.
doi: 10.1177/1535370220915826 |
[1] | LI An-qi, ZHU Meng-yi, WANG Yu, GAO Jing-shu, WU Xiao-ke. Potential Application of Tanshinone in the Treatment of Polycystic Ovary Syndrome and Mechanism [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 494-500. |
[2] | LEI Rui-xiang, WAN Yi, LI Yu-zi, GUAN De-feng, ZHANG Xue-hong. Association of Circadian Rhythm Disorders with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 501-505. |
[3] | QIAO Xin-yue, TAO Ai-lin, FENG Xiao-ling, CHEN Lu. Research on the Correlation between Polycystic Ovary Syndrome and Anxiety and Depression Disorders [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 506-511. |
[4] | TIAN Dejier, FENG Xiao-ling. Possible Application of Myo-Inositol and D-Chiro-Inositol in Treatment of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 512-517. |
[5] | YANG Qin, WANG Han-ting, CAO Yuan-yuan, ZHOU Jun, WANG Gui-ling. Effect of Resveratrol on the Function of Ovarian Granulose Cells [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 524-528. |
[6] | GAO Zheng, LI Meng-yuan, LI Bo, LIANG Jing-qiao, ZHANG Ya-dong, XU Xin. Efficacy of Chinese Medicine Compound on Abnormal Glucose and Lipid Metabolism in Patients with Obese Polycystic Ovary Syndrome: A Meta Analysis [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 368-377. |
[7] | ZHU Hai-ying, QI Dan-dan, SUN Ping-ping, SUN Na, LUAN Su-xian. A Case Report of Ovarian Hyperstimulation Syndrome Combined with Ovarian Torsion after Assisted Reproductive Technology Assisted Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 401-405. |
[8] | LI Xuan-ang, WANG Ting-ting, XIANG Shan, ZHAO Shuai, LIAN Fang. Research Progress of Ferroptosis in Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 425-429. |
[9] | LI Dan-ping, LIAN Fang, XIANG Shan. New Progress in the Mechanism of Metformin Therapy for Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 343-347. |
[10] | SHI Bai-chao, CHANG Hui, WANG Yu, LU Feng-juan, WANG Kai-yue, GUAN Mu-xin, MA Liang, WU Xiao-ke. The Role of Gut Microbiota in Patients with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 238-242. |
[11] | GAO Zhao-yang, ZHANG Ning-qing, CHEN Qiong-hua, WU Rong-feng. The Role of CircRNAs in Follicular Granulosa Cells of Patients with Endometriosis Infertility [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 243-248. |
[12] | YE Lin, HOU Zhi-jin, MENG Yu-shi. Research Progress of Sirolimus in the Field of Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 132-137. |
[13] | DAI He-qi, MAO Fei, FENG Rui-zhi, QIAN Yun. The Role of LncRNA as CeRNA in Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 144-149. |
[14] | ZHEN Jia, ZHAO Zi-yuan, WANG Zi-lu, SHI Wei, XU Li. Granulosa Cell Autophagy in Pathophysiological Mechanism of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 150-154. |
[15] | REN Lu-lu, REN Wen-chao, ZHANG Xiao-xuan, REN Chun-e. Pathways of Insulin Resistance in Ovarian Granulosa Cells of Polycystic Ovary Syndrome Patients [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 32-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||