Journal of International Reproductive Health/Family Planning ›› 2024, Vol. 43 ›› Issue (4): 322-327.doi: 10.12280/gjszjk.20240127
• Review • Previous Articles Next Articles
JIAO Meng-wen, ZHANG Yue-wen, WANG Ling, MO Shao-kang()
Received:
2024-03-14
Published:
2024-07-15
Online:
2024-07-24
Contact:
MO Shao-kang
E-mail:505704391@qq.com
JIAO Meng-wen, ZHANG Yue-wen, WANG Ling, MO Shao-kang. Advances in CircRNAs Research in Reproductive System[J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 322-327.
Add to citation manager EndNote|Ris|BibTeX
[1] | Qiu M, Chen Y, Zeng C. Biological functions of circRNA in regulating the hallmarks of gastrointestinal cancer (Review)[J]. Int J Oncol, 2024, 64(5):49. doi: 10.3892/ijo.2024.5637. |
[2] | Rahmani-Kukia N, Abbasi A. New insights on circular RNAs and their potential applications as biomarkers, therapeutic agents, and preventive vaccines in viral infections: with a glance at SARS-CoV-2[J]. Mol Ther Nucleic Acids, 2022, 29:705-717. doi: 10.1016/j.omtn.2022.08.012. |
[3] |
Yang L, Wilusz JE, Chen LL. Biogenesis and Regulatory Roles of Circular RNAs[J]. Annu Rev Cell Dev Biol, 2022, 38:263-289. doi: 10.1146/annurev-cellbio-120420-125117.
pmid: 35609906 |
[4] |
Pisignano G, Michael DC, Visal TH, et al. Going circular: history, present, and future of circRNAs in cancer[J]. Oncogene, 2023, 42(38):2783-2800. doi: 10.1038/s41388-023-02780-w.
pmid: 37587333 |
[5] | Sun M, Yang Y. Biological functions and applications of circRNAs-next generation of RNA-based therapy[J]. J Mol Cell Biol, 2023, 15(5):mjad031. doi: 10.1093/jmcb/mjad031. |
[6] | Jing T, Wu Y, Wan A, et al. Circular RNA as a Novel Regulator and Promising Biomarker in Polycystic Ovary Syndrome[J]. Biomolecules, 2023, 13(7):1101. doi: 10.3390/biom13071101. |
[7] | Saberiyan M, Karimi E, Safi A, et al. Circular RNAs: Novel Biomarkers in Spermatogenesis Defects and Male Infertility[J]. Reprod Sci, 2023, 30(1):62-71. doi: 10.1007/s43032-022-00885-3. |
[8] | Lv MQ, Yang YQ, Li YX, et al. A detection model of testis-derived circular RNAs in serum for predicting testicular sperm retrieval rate in non-obstructive azoospermia patients[J]. Andrology,2024 Feb 29. doi: 10.1111/andr.13617. |
[9] | Ward Z, Pearson J, Schmeier S, et al. Insights into circular RNAs: their biogenesis, detection, and emerging role in cardiovascular disease[J]. RNA Biol, 2021, 18(12):2055-2072. doi: 10.1080/15476286.2021.1891393. |
[10] |
Zhang Y, Luo J, Yang W, et al. CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets[J]. Cell Death Dis, 2023, 14(6):353. doi: 10.1038/s41419-023-05881-2.
pmid: 37296107 |
[11] | Zhang J, Wang C, Jia C, et al. The Role of Circular RNAs in the Physiology and Pathology of the Mammalian Ovary[J]. Int J Mol Sci, 2022, 23(23):15204. doi: 10.3390/ijms232315204. |
[12] | Kameda S, Ohno H, Saito H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells[J]. Nucleic Acids Res, 2023, 51(4):e24. doi: 10.1093/nar/gkac1252. |
[13] | Xu C, Zhang J. Mammalian circular RNAs result largely from splicing errors[J]. Cell Rep, 2021, 36(4):109439. doi: 10.1016/j.celrep.2021.109439. |
[14] | Samirae L, Krausewitz P, Alajati A, et al. The relevance of circRNAs in serum of patients undergoing prostate biopsy[J]. Int J Urol, 2024, 31(5):578-580. doi: 10.1111/iju.15414. |
[15] | Belter A, Popenda M, Sajek M, et al. A new molecular mechanism of RNA circularization and the microRNA sponge formation[J]. J Biomol Struct Dyn, 2022, 40(7):3038-3045. doi: 10.1080/07391102.2020.1844802. |
[16] | Li Z, Fan M, Zhou Z, et al. Circ_0082374 Promotes the Tumorigenesis and Suppresses Ferroptosis in Non-small Cell Lung Cancer by Up-Regulating GPX4 Through Sequestering miR-491-5p[J]. Mol Biotechnol,2024 Mar 4. doi: 10.1007/s12033-024-01059-z. |
[17] | Yang B, Wang YW, Zhang K. Interactions between circRNA and protein in breast cancer[J]. Gene, 2024, 895:148019. doi: 10.1016/j.gene.2023.148019. |
[18] | Shen Y, Zhang N, Chai J, et al. CircPDIA4 Induces Gastric Cancer Progression by Promoting ERK1/2 Activation and Enhancing Biogenesis of Oncogenic circRNAs[J]. Cancer Res, 2023, 83(4):538-552. doi: 10.1158/0008-5472.CAN-22-1923. |
[19] | Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications[J]. Cell, 2022, 185(12):2016-2034. doi: 10.1016/j.cell.2022.04.021. |
[20] |
Alsayed R, Sheikhan K, Alam MA, et al. Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions[J]. Semin Cancer Biol, 2023, 92:74-83. doi: 10.1016/j.semcancer.2023.04.005.
pmid: 37054905 |
[21] |
Zhang P, Dai M. CircRNA: a rising star in plant biology[J]. J Genet Genomics, 2022, 49(12):1081-1092. doi: 10.1016/j.jgg.2022.05.004.
pmid: 35644325 |
[22] |
Zheng Z, Zeng X, Zhu Y, et al. CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis[J]. Mol Cancer, 2024, 23(1):4. doi: 10.1186/s12943-023-01912-w.
pmid: 38184608 |
[23] | Zhang L, Gao H, Li X, et al. The important regulatory roles of circRNA-encoded proteins or peptides in cancer pathogenesis (Review)[J]. Int J Oncol, 2024, 64(2):19. doi: 10.3892/ijo.2023.5607. |
[24] |
Zheng W, Wang L, Geng S, et al. CircYthdc2 generates polypeptides through two translation strategies to facilitate virus escape[J]. Cell Mol Life Sci, 2024, 81(1):91. doi: 10.1007/s00018-024-05148-9.
pmid: 38361078 |
[25] |
Niu X, Huang Y, Lu H, et al. CircRNAs in Xiang pig ovaries among diestrus and estrus stages[J]. Porcine Health Manag, 2022, 8(1):29. doi: 10.1186/s40813-022-00270-1.
pmid: 35739583 |
[26] |
Xing J, Zhang M, Zhao S, et al. EIF4A3-Induced Exosomal circLRRC8A Alleviates Granulosa Cells Senescence Via the miR-125a-3p/NFE2L1 axis[J]. Stem Cell Rev Rep, 2023, 19(6):1994-2012. doi: 10.1007/s12015-023-10564-8.
pmid: 37243831 |
[27] | Huang X, Wu B, Chen M, et al. Depletion of exosomal circLDLR in follicle fluid derepresses miR-1294 function and inhibits estradiol production via CYP19A1 in polycystic ovary syndrome[J]. Aging(Albany NY), 2020, 12(15):15414-15435. doi: 10.18632/aging.103602. |
[28] | Qu B, Sun L, Xiao P, et al. CircCDK17 promotes the proliferation and metastasis of ovarian cancer cells by sponging miR-22-3p to regulate CD147 expression[J]. Carcinogenesis, 2024, 45(1/2):83-94. doi: 10.1093/carcin/bgad079. |
[29] | Zhang L, Zhou C, Jiang X, et al. Circ0001470 Acts as a miR-140-3p Sponge to Facilitate the Progression of Embryonic Development through Regulating PTGFR Expression[J]. Cells, 2022, 11(11):1746. doi: 10.3390/cells11111746. |
[30] |
Wang X, Zhang Y, Yu J, et al. Identification and analysis of key circRNAs in the mouse embryonic ovary provides insight into primordial follicle development[J]. BMC Genomics, 2024, 25(1):139. doi: 10.1186/s12864-024-10058-y.
pmid: 38310234 |
[31] | Chen AX, Jin RY, Zhou WM, et al. CircRNA circ_0043533 facilitates cell growth in polycystic ovary syndrome by targeting miR-1179[J]. Reprod Biol, 2022, 22(2):100637. doi: 10.1016/j.repbio.2022.100637. |
[32] |
Wang Z, Zheng Y, Zhong C, et al. Circular RNA as new serum metabolic biomarkers in patients with premature ovarian insufficiency[J]. Arch Gynecol Obstet, 2023, 308(6):1871-1879. doi: 10.1007/s00404-023-07219-x.
pmid: 37740794 |
[33] |
Zhao Z, Li D, Wang N, et al. The identification and functional analysis of CircRNAs in endometrial receptivity of mice with polycystic ovary[J]. Environ Toxicol, 2024, 39(3):1456-1470. doi: 10.1002/tox.24052.
pmid: 37987463 |
[34] | Wang W, Zang X, Li Y, et al. Integrating Analysis to Identify Differential circRNAs Involved in Goat Endometrial Receptivity[J]. Int J Mol Sci, 2023, 24(2):1531. doi: 10.3390/ijms24021531. |
[35] | Li Z, Shi L, Li Q, et al. The Expression and Bioinformatics Analysis of Circular RNAs in Endometritis Mouse Uterus Tissues[J]. Molecules, 2022, 27(12):3682. doi: 10.3390/molecules27123682. |
[36] |
Zhou C, Cheng X, Meng F, et al. Identification and characterization of circRNAs in peri-implantation endometrium between Yorkshire and Erhualian pigs[J]. BMC Genomics, 2023, 24(1):412. doi: 10.1186/s12864-023-09414-1.
pmid: 37488487 |
[37] | Tang W, Xu QH, Chen X, et al. Transcriptome sequencing reveals the effects of circRNA on testicular development and spermatogenesis in Qianbei Ma goats[J]. Front Vet Sci, 2023, 10:1167758. doi: 10.3389/fvets.2023.1167758. |
[38] |
Zhang S, Wang C, Wang Y, et al. A novel protein encoded by circRsrc1 regulates mitochondrial ribosome assembly and translation during spermatogenesis[J]. BMC Biol, 2023, 21(1):94. doi: 10.1186/s12915-023-01597-z.
pmid: 37095490 |
[1] | LI Jia-li, TU Xu-xu, WANG Shi-meng, NIU Ding-ren, FENG Xiao-ling. Recurrent Spontaneous Abortion Related to Oxidative Stress at Maternal-Fetal Interface [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 435-440. |
[2] | ZHAO An-qi, LIU Lin, TAN Xiao-fang. HPV Transmission through Sperm and Its Impact on Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 328-331. |
[3] | LI Miao-miao, JIANG Hong, CAI Peng-da. Influence Factor Analysis and Forecasting Research of Embryonic Arrest [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 332-337. |
[4] | LIANG Yue, DONG Jie, XIAO Xi-feng, WANG Xiao-hong. Advancements of MiR-202 in Reproductive Modulation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 228-233. |
[5] | ZHOU Xin-yue, ZHANG An-ni, ZHANG Xue-hong. Research Progress of m6A Modification in Reproductive-Related Diseases [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 392-397. |
[6] | NI Dan-yu, YANG Ye, XIE Qi-jun, JIANG Wei, LING Xiu-feng. The Effect of Poly-Pronucleus Incidence on Embryo Development and Pregnancy Outcome after ICSI [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 272-276. |
[7] | WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, GAO Na, DONG Rong, XIA Tian. Regulatory Role of N6-Methyladenosine Modification in Oogenesis and Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 310-316. |
[8] | CHEN Ruo-lin, ZHANG Yun-shan. Mechanisms and Clinical Relevance of Sperm DNA Damage [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 130-134. |
[9] | CUI Yu-gui, JIA Hong-yan, SHI Chen-nan, YAN Zheng-jie, LIU Jia-yin, MA Xiang. Clinical Practice of Oocyte Mitochondrial Transplantation and Ethical Issue [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 89-94. |
[10] | CHANG Tian-qing, WU Hua, FENG Rui-zhi, QIAN Yun. Research Progress of Proteins Related to Sperm Acrosome Development [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 44-49. |
[11] | FU Xu, ZHOU Ying, GU Yi-dong, WANG Jia-xiong, YANG Shen-min. A Case of Congenital Bilateral Absence of Vas Deferens with Spermatogenesis Failure [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(3): 204-206. |
[12] | WANG Xin-yi, WANG Zhi-qi, WANG Jun, XU Qin-zhou, XIA Xiao-yu. Regulation of Manchette Formation and Intra-Manchette Transport [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 129-134. |
[13] | CHEN Zhi-jian, WANG Cai-zhu. Application of Time-Lapse Imaging Technology for Embryo Selection: A Review [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 139-142. |
[14] | CHEN Ran-ran, SONG Dian-rong. The Major Signaling Pathways in Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 481-485. |
[15] | BAI Yin-yang, XIONG Fang, ZHANG Yun, CHEN Jie, XU Li-shuang, WANG Min. The Influence of Perinatal Exposure of Low Dose of Bisphenol A on Spermatogenesis of Male Offspring Rats [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(5): 353-358. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||