Journal of International Reproductive Health/Family Planning ›› 2023, Vol. 42 ›› Issue (1): 72-76.doi: 10.12280/gjszjk.20220391
• Review • Previous Articles Next Articles
FENG Xiao-ling, CHEN Yao, WANG Ying()
Received:
2022-08-08
Published:
2023-01-15
Online:
2023-02-03
Contact:
WANG Ying
E-mail:wangyingdoctor@126.com
FENG Xiao-ling, CHEN Yao, WANG Ying. Effects of Branched-Chain Amino Acids on Metabolism and Reproduction in Polycystic Ovary Syndrome[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 72-76.
Add to citation manager EndNote|Ris|BibTeX
[1] |
马帅, 张蓓, 李媛. 多囊卵巢综合征诊断标准的变迁[J]. 中国计划生育和妇产科, 2020, 12(2):6-9. doi: 10.3969/j.issn.1674-4020.2020.02.03.
doi: 10.3969/j.issn.1674-4020.2020.02.03 |
[2] |
程天缘, 王昕. 多囊卵巢综合征合并糖脂代谢异常中西医研究进展[J]. 辽宁中医药大学学报, 2022, 24(3):73-78. doi: 10.13194/j.issn.1673-842x.2022.03.016.
doi: 10.13194/j.issn.1673-842x.2022.03.016 |
[3] |
Rahat H, Garcia-Reyes Y, Pyle L, et al. The branched-chain amino acid valine is higher and relates to insulin sensitivity in polycystic ovary syndrome[J]. J Inv Med, 2018, 66(1):71-72. doi: 10.1136/jim-2017-000663.23.
doi: 10.1136/jim-2017-000663.23 |
[4] |
Tang L, Yuan L, Yang G, et al. Changes in whole metabolites after exenatide treatment in overweight/obese polycystic ovary syndrome patients[J]. Clin Endocrinol(Oxf), 2019, 91(4):508-516. doi: 10.1111/cen.14056.
doi: 10.1111/cen.14056 URL |
[5] |
Szmygin H, Lenart-Lipinska M, Szydelko J, et al. Branched-chain amino acids as a novel biomarker of metabolic disturbances in women with polycystic ovary syndrome-literature review[J]. Ginekol Pol, 2022, 93(8):665-669. doi: 10.5603/GP.a2022.0079.
doi: 10.5603/GP.a2022.0079 pmid: 35942720 |
[6] |
Zhang CM, Zhao Y, Li R, et al. Metabolic heterogeneity of follicular amino acids in polycystic ovary syndrome is affected by obesity and related to pregnancy outcome[J]. BMC Pregnancy Childbirth, 2014, 14:11. doi: 10.1186/1471-2393-14-11.
doi: 10.1186/1471-2393-14-11 URL |
[7] |
Manta-Vogli PD, Schulpis KH, Dotsikas Y, et al. The significant role of amino acids during pregnancy: nutritional support[J]. J Matern Fetal Neonatal Med, 2020, 33(2):334-340. doi: 10.1080/14767058.2018.1489795.
doi: 10.1080/14767058.2018.1489795 pmid: 29909700 |
[8] |
Neinast M, Murashige D, Arany Z. Branched Chain Amino Acids[J]. Annu Rev Physiol, 2019, 81:139-164. doi: 10.1146/annurev-physiol-020518-114455.
doi: 10.1146/annurev-physiol-020518-114455 pmid: 30485760 |
[9] |
李双玲, 王志华. 支链氨基酸代谢在心血管疾病中作用的研究进展[J]. 广西医学, 2021, 43(18):2235-2238. doi: 10.11675/j.issn.0253-4304.2021.18.18.
doi: 10.11675/j.issn.0253-4304.2021.18.18 |
[10] |
Neinast MD, Jang C, Hui S, et al. Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-Chain Amino Acids[J]. Cell Metab, 2019, 29(2):417-429.e4. doi: 10.1016/j.cmet.2018.10.013.
doi: S1550-4131(18)30645-4 pmid: 30449684 |
[11] |
杨文慧, 何燕, 杨莉. 支链氨基酸代谢与胰岛素抵抗及2型糖尿病研究进展[J]. 中华老年心脑血管病杂志, 2019, 21(4):434-436. doi: 10.3969/j.issn.1009-0126.2019.04.025.
doi: 10.3969/j.issn.1009-0126.2019.04.025 |
[12] |
Yoon MS. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism[J]. Nutrients, 2016, 8(7):405. doi: 10.3390/nu8070405.
doi: 10.3390/nu8070405 URL |
[13] |
Calvo IA, Sharma S, Paulo JA, et al. The fission yeast FLCN/FNIP complex augments TORC1 repression or activation in response to amino acid (AA) availability[J]. iScience, 2021, 24(11):103338. doi: 10.1016/j.isci.2021.103338.
doi: 10.1016/j.isci.2021.103338 URL |
[14] |
陈嘉艺, 周昕博, 单安山, 等. 支链氨基酸对动物糖脂代谢的调控及作用机理[J]. 动物营养学报, 2020, 32(9):4078-4085. doi: 10.3969/j.issn.1006-267x.2020.09.015.
doi: 10.3969/j.issn.1006-267x.2020.09.015 |
[15] |
White PJ, McGarrah RW, Grimsrud PA, et al. The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase[J]. Cell Metab, 2018, 27(6):1281-1293.e7. doi: 10.1016/j.cmet.2018.04.015.
doi: S1550-4131(18)30258-4 pmid: 29779826 |
[16] |
郭一帆, 陈佩杰, 肖卫华. 肥胖状态下脂肪组织线粒体功能紊乱与运动调控[J]. 中国生物化学与分子生物学报, 2020, 36(10):1145-1150. doi: 10.13865/j.cnki.cjbmb.2020.08.1196.
doi: 10.13865/j.cnki.cjbmb.2020.08.1196 |
[17] |
马清泉, 王国红, 周昕博, 等. 亮氨酸和异亮氨酸对脂肪沉积的影响及机制[J]. 东北农业大学学报, 2020, 51(1):50-56,64. doi: 10.19720/j.cnki.issn.1005-9369.2020.01.006.
doi: 10.19720/j.cnki.issn.1005-9369.2020.01.006 |
[18] |
Zhao Y, Fu L, Li R, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis[J]. BMC Med, 2012, 10:153. doi: 10.1186/1741-7015-10-153.
doi: 10.1186/1741-7015-10-153 pmid: 23198915 |
[19] |
Siddik MAB, Shin AC. Recent Progress on Branched-Chain Amino Acids in Obesity, Diabetes, and Beyond[J]. Endocrinol Metab(Seoul), 2019, 34:234-246. doi: 10.3803/EnM.2019.34.3.234.
doi: 10.3803/EnM.2019.34.3.234 |
[20] |
孙旭, 赖建强, 王杰. 支链氨基酸与妊娠期糖尿病关系及作用机制[J]. 卫生研究, 2021, 50(2):337-341. doi: 10.19813/j.cnki.weishengyanjiu.2021.02.031.
doi: 10.19813/j.cnki.weishengyanjiu.2021.02.031 |
[21] |
Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance[J]. Cell Metab, 2009, 9(4):311-326. doi: 10.1016/j.cmet.2009.02.002.
doi: 10.1016/j.cmet.2009.02.002 pmid: 19356713 |
[22] |
Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance[J]. Cell Metab, 2012, 15(5):606-614. doi: 10.1016/j.cmet.2012.01.024.
doi: 10.1016/j.cmet.2012.01.024 pmid: 22560213 |
[23] |
Asghari G, Farhadnejad H, Teymoori F, et al. High dietary intake of branched-chain amino acids is associated with an increased risk of insulin resistance in adults[J]. J Diabetes, 2018, 10(5):357-364. doi: 10.1111/1753-0407.12639.
doi: 10.1111/1753-0407.12639 pmid: 29281182 |
[24] |
Yu D, Richardson NE, Green CL, et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine[J]. Cell Metab, 2021, 33(5):905-922.e6. doi: 10.1016/j.cmet.2021.03.025.
doi: 10.1016/j.cmet.2021.03.025 pmid: 33887198 |
[25] |
杨珺兰, 王泽, 邹晓燕, 等. PCOS肥胖脂代谢特点及相关基因研究进展[J]. 现代妇产科进展, 2022, 31(5):377-379,383. doi: 10.13283/j.cnki.xdfckjz.2022.05.014.
doi: 10.13283/j.cnki.xdfckjz.2022.05.014 |
[26] |
Serralde-Zúñiga AE, Guevara-Cruz M, Tovar AR, et al. Omental adipose tissue gene expression, gene variants, branched-chain amino acids, and their relationship with metabolic syndrome and insulin resistance in humans[J]. Genes Nutr, 2014, 9(6):431. doi: 10.1007/s12263-014-0431-5.
doi: 10.1007/s12263-014-0431-5 pmid: 25260659 |
[27] |
Hajitarkhani S, Moini A, Hafezi M, et al. Differences in gene expression of enzymes involved in branched-chain amino acid metabolism of abdominal subcutaneous adipose tissue between pregnant women with and without PCOS[J]. Taiwan J Obstet Gynecol, 2021, 60(2):290-294. doi: 10.1016/j.tjog.2020.12.008.
doi: 10.1016/j.tjog.2020.12.008 pmid: 33678329 |
[28] |
White PJ, Lapworth AL, An J, et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export[J]. Mol Metab, 2016, 5(7):538-551. doi: 10.1016/j.molmet.2016.04.006.
doi: S2212-8778(16)30030-8 pmid: 27408778 |
[29] |
李晓敏, 黄文洁, 卢永超. 多囊卵巢综合征排卵障碍的发生机制[J]. 中国医药导刊, 2021, 23(7):486-490. doi: 10.3969/j.issn.1009-0959.2021.07.003.
doi: 10.3969/j.issn.1009-0959.2021.07.003 |
[30] | 梁宝珠, 钟春华, 李彩娟, 等. 多囊卵巢综合征所致复发性流产与体重指数、胰岛素抵抗及疗效相关性研究[J]. 中国优生与遗传杂志, 2015, 23(4):77-79. |
[31] |
Xu J, Wang J, Cao Y, et al. Downregulation of Placental Amino Acid Transporter Expression and mTORC1 Signaling Activity Contributes to Fetal Growth Retardation in Diabetic Rats[J]. Int J Mol Sci, 2020, 21(5):1849. doi: 10.3390/ijms21051849.
doi: 10.3390/ijms21051849 URL |
[32] | 刘学思, 乔岩岩. 多囊卵巢综合征患者自然流产发病机制的研究进展[J]. 中国优生与遗传杂志, 2021, 29(7):1034-1039. |
[33] |
Bartolacci A, Buratini J, Moutier C, et al. Maternal body mass index affects embryo morphokinetics: a time-lapse study[J]. J Assist Reprod Genet, 2019, 36(6):1109-1116. doi: 10.1007/s10815-019-01456-3.
doi: 10.1007/s10815-019-01456-3 URL |
[34] |
Chang AY, Lalia AZ, Jenkins GD, et al. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome[J]. Metabolism, 2017, 71:52-63. doi: 10.1016/j.metabol.2017.03.002.
doi: 10.1016/j.metabol.2017.03.002 URL |
[1] | LI An-qi, ZHU Meng-yi, WANG Yu, GAO Jing-shu, WU Xiao-ke. Potential Application of Tanshinone in the Treatment of Polycystic Ovary Syndrome and Mechanism [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 494-500. |
[2] | LEI Rui-xiang, WAN Yi, LI Yu-zi, GUAN De-feng, ZHANG Xue-hong. Association of Circadian Rhythm Disorders with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 501-505. |
[3] | QIAO Xin-yue, TAO Ai-lin, FENG Xiao-ling, CHEN Lu. Research on the Correlation between Polycystic Ovary Syndrome and Anxiety and Depression Disorders [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 506-511. |
[4] | TIAN Dejier, FENG Xiao-ling. Possible Application of Myo-Inositol and D-Chiro-Inositol in Treatment of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 512-517. |
[5] | GAO Zheng, LI Meng-yuan, LI Bo, LIANG Jing-qiao, ZHANG Ya-dong, XU Xin. Efficacy of Chinese Medicine Compound on Abnormal Glucose and Lipid Metabolism in Patients with Obese Polycystic Ovary Syndrome: A Meta Analysis [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 368-377. |
[6] | ZHU Hai-ying, QI Dan-dan, SUN Ping-ping, SUN Na, LUAN Su-xian. A Case Report of Ovarian Hyperstimulation Syndrome Combined with Ovarian Torsion after Assisted Reproductive Technology Assisted Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 401-405. |
[7] | LI Xuan-ang, WANG Ting-ting, XIANG Shan, ZHAO Shuai, LIAN Fang. Research Progress of Ferroptosis in Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 425-429. |
[8] | LI Dan-ping, LIAN Fang, XIANG Shan. New Progress in the Mechanism of Metformin Therapy for Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 343-347. |
[9] | SHI Bai-chao, CHANG Hui, WANG Yu, LU Feng-juan, WANG Kai-yue, GUAN Mu-xin, MA Liang, WU Xiao-ke. The Role of Gut Microbiota in Patients with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 238-242. |
[10] | YE Lin, HOU Zhi-jin, MENG Yu-shi. Research Progress of Sirolimus in the Field of Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 132-137. |
[11] | DAI He-qi, MAO Fei, FENG Rui-zhi, QIAN Yun. The Role of LncRNA as CeRNA in Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 144-149. |
[12] | ZHEN Jia, ZHAO Zi-yuan, WANG Zi-lu, SHI Wei, XU Li. Granulosa Cell Autophagy in Pathophysiological Mechanism of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 150-154. |
[13] | REN Lu-lu, REN Wen-chao, ZHANG Xiao-xuan, REN Chun-e. Pathways of Insulin Resistance in Ovarian Granulosa Cells of Polycystic Ovary Syndrome Patients [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 32-37. |
[14] | LIU Yi-ran, FENG Rui-zhi, QIAN Yun. Research Progress on Post-Translational Modification in Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 38-42. |
[15] | ZHOU Xin-yue, LI Ning, WEI Lin-fei, ZHANG Xue-hong. The Relationship between Intestinal Flora, Intestinal Metabolites and Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 42-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||